Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.2.115

DSSCs Efficiencies of Photo Electrode Thickness and Modified Photo Electrode Surface Area  

Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University)
Yang, Wook (Department of Electrical Engineering, Graduate School Pukyong National University)
Zhou, Ze-Yuan (Department of Electrical Engineering, Graduate School Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.2, 2014 , pp. 115-120 More about this Journal
Abstract
Photo electrode is an important component for DSSC. DSSCs electrical characteristics and efficiencies fabricated with different $TiO_2$ photo electrodes thickness and modified phoro electrode surface area were studied. $11{\mu}m$ $TiO_2$ photo electrode shows a 4.956% efficiency. The highest short circuit current density was a $9.949mA/cm^2$. Efficiencies and short circuit current density increased as tape casting thickness decreased. Modified surface area of the photo electrode by needle stamp processing were studied. 200 times needle stamp processing on photo electrodes shows a highest 5.168% efficiency. Also the short circuit current density was a $10.261mA/cm^2$.
Keywords
DSSC; $TiO_2$; Photo electrode; Surface area; Efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
2 L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007).   DOI   ScienceOn
3 Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009).   DOI   ScienceOn
4 T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008).   DOI   ScienceOn
5 S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 26, 3 (2013).
6 Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, and Y. Zhu, Phys. Chem. Chem. Phys., 123, 595 (2010).
7 H. G. Jung, Y. S. Kang, Y. K. Sun, Electrochimica Acta. 55, 4637 (2010).   DOI   ScienceOn
8 S. Ito and M. Gratzel, Thin Solid Films, 516, 4613 (2008).   DOI   ScienceOn
9 H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 667 (2008).
10 X. G Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
11 S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. KIEEME, 25, 7 (2012).
12 B. Munkhbayar, S. H. Huang, J. H. Kim, K. Y. Bae, M. K. Ji, H. S. Chang, and H. M. Jeong, Electorchimica Acta, 80, 1 (2012).   DOI   ScienceOn
13 X. Z. Liu, Z. Huang, K. X. Li, H. Li, D. M. Li, L. Q. Chen, and Q. B. Meng, Chinese Phys. Lett., 23 2606 (2006).   DOI   ScienceOn
14 H. Chang, C. H. Chen, M. J. Kao, S. H. Chien, and C. Y. Chou, Appl. Surf. Sci., 275, 15 (2013).
15 K. S. Hwang and K. P. Ha, Appl. Chem. Eng., 21, 405 (2010).
16 S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem. B, 106, 10004 (2002).   DOI   ScienceOn
17 Y. Lee and M. Kang, Mat. Chem. Phys., 122, 1 (2010).   DOI   ScienceOn
18 V. Dhasa, S. Mudulia, S. Agarkara, A. Ranaa, B. Hannoyerb, R. Banerjeea, and S. Ogale, Sol. Energy, 85, 6 (2011).
19 T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008).   DOI   ScienceOn