Browse > Article
http://dx.doi.org/10.4313/JKEM.2013.26.3.209

DSSCs Efficiency by Tape Casting Pt Counter Electrode and Different Thickness Between Two Substrates  

Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University)
Yang, Wook (Department of Electrical Engineering, Graduate School Pukyong National University)
Zhou, Zeyuan (Department of Electrical Engineering, Graduate School Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.26, no.3, 2013 , pp. 209-215 More about this Journal
Abstract
DSSCs electrical characteristics and efficiency fabricated with different tape casting thickness Pt counter electrodes and different thickness between $TiO_2$ photo electrode and Pt counter electrode substrate were studied. 1 layer Pt counter electrode shows 3.979% efficiency. Efficiency increased as tape casting thickness decreased. The lowest open-circuit voltage was a 0.726 V and the highest short-circuit current was a 2.188 mA on 1 layer Pt counter electrode. On the different thickness between two substrates, the lowest open-circuit voltage 0.712 V and the highest short-circuit current 2.787 mA was measured at $60{\mu}m$ surlyn film thickness and it shows the highest value of 5.067% efficiency.
Keywords
DSSC; Pt; Counter electrode; Efficiency; Surlyn;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Pan, M. Liu, Q. Zhang, J. Li, Y. Liu, Q. Lü, J. Li, D. Wang, Y. Bai, T. Li, and Z. Liu, Thin Solid Films, 484, 346 (2005).   DOI   ScienceOn
2 W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi, Electrochem. Commun., 10, 1555 (2008).   DOI   ScienceOn
3 T. Yohannes, O. Inganas, Sol. Energy Mater. Solar Cells, 51, 193 (1998).   DOI   ScienceOn
4 Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, Chem. Lett., 1060 (2002).
5 Y. Shibata, T. Kato, T. Kado, R. Shiratuchi, W. Takashima, K. Kaneto, and S. Hayase, Chem. Commun., 2730 (2003).
6 Y. Saito, W. Kubo, T. Kitamura, Y. Wada, and S. Yanagida, J. Photochem. Photobiol. A: Chem., 164, 153 (2004).   DOI   ScienceOn
7 Z. Huang, X. Liu, K. Li, D. Li, Y. Luo, H. Li, W. Song, L. Chen, and Q. Meng, Electrochem. Commun., 9, 596 (2007).   DOI   ScienceOn
8 E. Ramasamy, W. J. Lee, D. Y. Lee, and J. S. Song, Electrochem. Commun., 10, 1087 (2008).   DOI   ScienceOn
9 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
10 Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009).   DOI   ScienceOn
11 L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007).   DOI   ScienceOn
12 T. W. Hamann, R. A. Jensen, Alex B. F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy & Environmental Sci., 1, 66 (2008).   DOI   ScienceOn
13 M. A. Green, K. Emery, D. L. King, S. Igari, W. Warta, Prog. Photovolt.: Res. Appl., 11, 347 (2003).   DOI   ScienceOn
14 S. Dai, K. Wang, J. Weng, Y. Sui, Y. Huang, S. Xiao, S. Chen, L. Hu, F. Kong, Xu. Pan, C. Shi, Li Guo, and S. Dai, Sol. Energy Mater. Solar Cells, 85, 447 (2005).   DOI   ScienceOn
15 S. Dai, J. Weng, Y. Sui, C. Shi, Y. Huang, S. Chen, X. Pan, X. Fang, L. Hu, F. Kong, K. Wang, and S. Dai, Sol. Energy Mater. Solar Cells, 84, 125 (2004).   DOI   ScienceOn
16 M.Gratzel, J. Photochem.& Photobio.C Photochem. Rev., 4, 145, (2003).   DOI   ScienceOn
17 X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida, and E. Abe, J. Electroanal. Chem., 570, 257 (2004).   DOI   ScienceOn
18 S. S. Kim, K. W. Park, J. H. Yum, and Y. E. Sung, Sol. Energy Mater. Sol. Cells, 90, 283 (2006).   DOI   ScienceOn
19 N. Papageorgiou, W. F. Maier, and M. Gratzel, J. Electrochem. Soc., 144, 876 (1997).   DOI   ScienceOn
20 K. Suzuki, M. Yamaguchi, M. Kumagai, and S. Yanagida, Chem. Lett., 32, 28 (2003).   DOI   ScienceOn
21 M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993).   DOI   ScienceOn
22 H. S. Park, S. Y. Kwon, and W. Yang, J. KIEEME, 25, 537 (2012)
23 Y. L. Lee, C. L. Chen, L. W. Chong, C. H. Chen, Y. F. Liu, C. F. Chi. Electrochem Commun., 12, 1662 (2010).   DOI   ScienceOn
24 S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem. B., 106, 10004 (2002).   DOI   ScienceOn
25 W. Hong, Y. Xu, G. Lu, C. Li, and G. Shi Electrochem. Commun., 10, 1555 (2008).   DOI   ScienceOn
26 J. Wu, Q. Li, L. Fan, Z. Lan, P. Li, J. Lin, and S. Hao, J. Power Sources, 181, 172 (2008).   DOI   ScienceOn
27 Y. M Han, S. H. Hwang, M. H Kang, Y. J. Kim, H. K. Kim, S. H Kim, H. J. Bae, H. K. Choi, and M. H. Jeon, J. KIEEME, 24, 333 (2011).
28 H. J. Kim. D. Y. Lee, B. K. Koo, W. J. Lee, J. S. Song, and D. Y. Lee, J. KIEEME, 17, 1090 (2004).
29 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Adv. Mater., 22, 3906 (2010).   DOI   ScienceOn
30 K. Imotoa, K. Takahashi, T. Yamaguch, T. Komura, J. Nakamura, and K. Murata, Sol. Energy Mater. Sol. Cells, 79, 459 (2003).   DOI   ScienceOn
31 K. S. Hwang and K. R. Ha, Appl. Chem. Eng., 21, 405 (2010).
32 C. H. Yoon, R. Vittal, J. Lee, W. S. Chae, and K. J. Kim, Electrochim. Acta., 53, 2890 (2008).   DOI   ScienceOn
33 P. Li, J. Wu, J. Lin, M. Huang, Z. Lan, and Q. Li, Electrochim. Acta., 53, 4161 (2008).   DOI   ScienceOn