Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.7.537

DSSCs Efficiency by Thickness of TiO2 Photoelectrode and Thickness Differences Between Two Substrates  

Park, Han-Seok (Department of Electrical Engineering, Pukyong National University)
Kwon, Sung-Yeol (Department of Electrical Engineering, Pukyong National University)
Yang, Wook (Graduate School of Electrical Engineering, Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.7, 2012 , pp. 537-542 More about this Journal
Abstract
DSSCs efficiency by thickness of $TiO_2$ photoelectrode and thickness differences between two substrates studied. DSSCs is made of the doctor blade method and photoelectrode annealing temperature elevated in a different ways. In addition, cells efficiencies of according to the different thickness between $TiO_2$ photoelectrode substrate and Pt counter electrode was measured. Efficiency of DSSCs made with $TiO_2$ photoelectrode of 18 ${\mu}m$ thickness and the gap difference between the substrate 28 ${\mu}m$ shows a highest 4.805% efficiency.
Keywords
DSSC; $TiO_2$; Photoelectrode; Efficiency;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 S. Nakade, M. Matsuda, S. Kambe, Y. Saito, T. Kitamura, T. Sakata, Y. Wada, H. Mori, and S. Yanagida, J. Phys. Chem., B106, 10004 (2002).
2 C. Lee, W. Kang, M. J. Ko, K. Kim, and N. G. Park, J. Sol. Energy Eng., 132, 021104 (2010).   DOI
3 H. Cho, S. G Yu, and J. W. Cho, J. KIEEME, 22, 269 (2009).
4 M. K. I. Senevirathna, P. K. D. D. P. Pitigala, E. V. A. Premalal, K. Tennakone, G. R. A. Kumara, and A. Konno, Sol. Energ. Mater. Sol. Cells, 91, 544 (2007).   DOI
5 P. Qin, M. Linder, T. Brinck, G. Boschloo, A. Hagfeldt, and L. Sun, Adv. Mater., 21, 2993 (2009).   DOI
6 B. Tan, E. Toman, Y. Li, and Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007).   DOI
7 C. S. Chou, Y. J. Lin, R. Y. Yang, and K. H. Liu, Adv. Powder Technol., 22, 31 (2011).   DOI
8 Y. Zhang, J. Zhang, P. Wang, G. Yang, Q. Sun, J. Zheng, Y. Zhu, Mater. Chem. Phys., 123, 595 (2010).   DOI   ScienceOn
9 H. G. Jung, Y. S. Kang, and Y. K. Sun, Electrochim. Acta., 55, 4637 (2010).   DOI
10 S. Ito and M. Gratzel, Thin Solid Films, 516, 4613 (2008).   DOI
11 H. J. Koo and N. G. Park, Inorg. Chim. Acta., 361, 667 (2008).
12 X. G. Zhao, E. M. Jin, and H. B. Gu, J. KIEEME, 24, 427 (2011).
13 K. S. Hwang and K. R. Ha, Appl. Chem. Eng., 21, 405 (2010).
14 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
15 Y. Zhang, Y. Shen, F. Gu, M. Wu, Y. Xie, and J. Zhang, Appl. Surf. Sci., 256, 85 (2009).   DOI
16 L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007).   DOI   ScienceOn
17 T. W. Hamann, R. A. Jensen, A. B. F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008).   DOI
18 H. J. Kim, D. Y. Lee, and J. S. Song, J. KIEEME, 18, 571 (2005).