Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.6.420

Dielectric and Piezoelectric Properties of Alkaline Lead-free Piezoceramic-epoxy Composites  

Yoon, Chang-Ho (School of Materials Science and Engineering, University of Ulsan)
Le, Duc Thang (Korea Institute of Ceramic Engineering and Technology, Electronic Component Center)
Heo, Dae-Jun (School of Materials Science and Engineering, University of Ulsan)
Ahn, Kyoung-Kwan (of Mechanical Engineering, University of Ulsan)
Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.6, 2012 , pp. 420-425 More about this Journal
Abstract
Lead-free piezoelectric ceramic/epoxy composites with '0-3' connectivity were prepared by cold-pressing with a temperature controlled curing method. A ceramic powder with a composition of $(Na_{0.51}K_{0.47}Li_{0.02})(Nb_{0.8}Ta_{0.2})O_3$ was synthesized by a conventional solid state reaction route. The dielectric and piezoelectric properties of ceramic/epoxy composites were characterized as a function of the volume fraction (${\phi}$) of piezoelectric ceramics, which was varied from 70 to 95 vol%. The results indicated that the piezoelectric properties of composites were significantly affected by the volume fraction of ceramics. In terms of the piezoelectric properties, specimens showed the best performance at ${\phi}$= 85 vol%, resulting in the piezoelectric constant $d_{33}$ of 39 pC/N and the figure of merit as a piezoelectric energy harvester ($d_{33}{\cdot}g_{33}$) of 1.24 $pm^2/N$.
Keywords
Lead-free piezoelectric; Ceramic-epoxy composite; Alkaline niobate; Energy harvesting; Dielectric properties;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 I. Patel, E. Siores, and T. Shah, Sensor. Actuat., A159, 213 (2010).
2 M. Aureli, C. Prince, M. Porfiri, and S. D. Peterson, Smart Mater. Struct., 19, 015003 (2010).   DOI
3 P. J. Cottinet, D. Guyomar, B. Guiffard, C. Putson, and L. Lebrun, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57, 774 (2010).   DOI
4 L. Lebrun, D. Guyomar, B. Guiffard, P. J. Cottinet, and C. Putson, Sensor. Actuat., A153, 251 (2009).
5 K. L. Ren, Y. M. Liu, X. C. Geng, H. F. Hofmann, and Q. M. M. Zhang, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 53, 631 (2006).   DOI
6 D. Shen, S. Y. Choe, and D. J. Kim, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 46, 6755 (2007).
7 D. Y. Wang, K. Li, and H. L. W. Chan, Appl. Phys. A-Mater. Sci. Process., 80, 1531 (2005).   DOI
8 J. H. Seol, J. S. Lee, H. N. Ji, Y. P. Ok, G. P. Kong, K. S. Kim, C. Y. Kim, and W. P. Tai, Ceram. Int., 38S, S263 (2012).   DOI
9 D. A. van den Ende, H. J. van de Wiel, W. A. Groen, and S. van der Zwaag, Smart Mater. Struct., 21, 015011 (2012).   DOI
10 P. L. Tan, D. A. Hall, M. A. Williams, and A. K. Wood, Proceedings of 10th IEEE Inrernational Symposium on Applications of Ferroelectrics, 295 (1996).
11 W. Thamjaree, W. Nhuapeng, A. Chaipanich, and T. Tunkasirir, Appl. Phys., A81, 1419 (2005).
12 J. S. Hornsby and D. K. Das-gupta, IEEE Trns. Dielectr. Electr. Insul., 11, 19 (2004).   DOI
13 S. Priya and D. Inman, Energy Harvesting Technologies (Springer, New York, 2008).
14 K. H. Lam, X. Wang, and H. L. W. Chan, Compos. Pt., A, Appl. Sci. Manuf., 36, 1595 (2005).   DOI
15 H. G. Lee and H. G. Kim, J. Appl. Phys., 67, 2024 (1990).   DOI
16 G. Han, J. Ryu, C. W. Ahn, W. H. Yoon, J. J. Choi, B. D. Hahn, J. W. Kim, J. H. Choi, and D. S. Park, J. AM. Ceram. Soc., published online, DOI: 10.1111/j.1551-2916.2012.05139.x
17 K. H. Lam, D. M. Lin, Y. Q. Ni, and H. L. Chan, Structural Health Monitoring 8, 283 (2009).   DOI
18 Y. Jeong, J. Hong, B. H. Seo, Y. K. Oh, J. Yoo, and L. Hwang, 2010 IEEE International Symposium on the Applications of Ferroelectrics ISAF (IEEE Xplore, Edinburgh, 2010).
19 Z. Y. Shen, J. F. Li, R. Chen, Q. Zhou, and K. K. Shung, J. AM. Ceram. Soc., 94, 1346 (2011).   DOI
20 M. S. Kim, S. J. Jeong, I. S. Kim, J. S. Song, and Y. W. Oh, Jpn. J. Appl. Phys., 48, 010204 (2009).   DOI
21 B. M. Jin, D. S. Lee, I. W. Kim, J. H. Kwon, J. S. Lee, J. S. Song, and S. J. Jeong, Ceram. Int., 30 1449 (2004).   DOI
22 S. F. Mendes, C. M. Costa, V. Sencadeas, and J. S. Nunes, Appl. Phys., A96, 1037 (2009)
23 T. Yamada, T. Ueda, and T. Kitayama, J. Appl. Phys., 53, 4328 (1982).   DOI
24 Z. J. Lim H. Y. Gong, and Y. J. Zhang, Current Appl. Phys., 9, 588 (2009).   DOI
25 Y. T. Or, B. Ploss, F. G. Shin, H. L. W. Chan, and C. L. Choy, Integ. Ferroelectr., 47, 19 (2002).   DOI
26 K. H. Lam and H. L. W. Chan, Compos. Sci. Technol., 65, 1107 (2005).   DOI
27 A. Petchsuk, W. Supmak, and A. Thanaboonsombut, J. Appl. Polym. Sci., 114, 1048 (2009).   DOI
28 D. T. Le, N. B. Do, D. U. Kim, I. K. Hong, I. W. Kim, and J. S. Lee, Ceram. Int., 38S, S259 (2012).
29 K. H. Lam, X. Wang, and H. L. W. Chan, Compos. Pt., A, Appl. Sci. Manuf., 36, 1595 (2005).   DOI
30 Y. J. Choi, M. J. Yoo, H. W. Kang, H. G. Lee, S. H. Han, and S. Nahm, Journal of Electroceramics, published online (2012). DOI 10.1007/s10832-012-9706-7
31 S. H. Choy, W. K. Li, H. K. Li, K. H. Lam, and H. L. W. Chan, J. Appl. Phys., 102, 114111 (2007).   DOI
32 K. K. Shung, J. M. Cannata, and Q. F. Zhou, J. Electroceram., 19, 141 (2007).   DOI