Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.10.773

Development and Evaluation of the Road Energy Harvester According to Piezoelectric Cantilever Structure and Vehicle Load Transfer Mechanism  

Kim, Chang-Il (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Kim, Kyung-Bum (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Jeong, Young-Hun (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Lee, Young-Jin (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Cho, Jeong-Ho (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Paik, Jong-Hoo (Electronic Materials Convergence Division, Korea Institute of Ceramic Engineering & Technology)
Kang, In-Seok (JINWOO Soft Innovation)
Lee, Moo-Yong (JINWOO Soft Innovation)
Choi, Beom-Jin (Senbool Inc.)
Park, Shin-Seo (Senbool Inc.)
Cho, Young-Bong (Tiocean Inc.)
Nahm, Sahn (Department of Materials Science and Engineering, Korea University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.10, 2012 , pp. 773-778 More about this Journal
Abstract
A road energy harvester was designed and fabricated to convert mechanical energy from the vehicle load to electrical energy. The road energy harvester is composed of 16 piezoelectric cantilevers. We fabricated prototypes using a vehicle load transfer mechanism. Applying a vehicle load transfer mechanism rather than directly installing energy harvesters under roads decreases the area of road construction and allows more energy harvesters to be installed on the side of the road. The power generation amount with respect to the vehicular velocity change was assessed by installing the vehicle load transfer mechanism form and underground form. The energy harvester installed in the underground form generated power of 4.52 mJ at the vehicular velocity of 50 km/h. Also, power generation of the energy harvester installed in the vehicle load transfer mechanism form was 48.65 mJ at the vehicular velocity of 50 km/h.
Keywords
Piezoelectric; Energy harvesting; Cantilever; Vehicle; Paving; Road;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. H. Kim, H. J. Jung, B. M. Lee, and S. J. Jang, Appl. Phys. Lett., 98, 214102 (2011).   DOI   ScienceOn
2 X. Chen, S. Xu, N. Yao, and Y. Shi, Nano Lett., 10, 2133 (2010).   DOI   ScienceOn
3 L. Mateu and F. Moll, J. Intell. Mater. Syst. Struct., 16, 835 (2005).   DOI
4 C. I. Kim, J. H. Lee, K. B. Kim, Y. H. Jeong, J. H. Cho, J. H. Paik, Y. J. Lee, and S. Nahm, J. KIEEME, 24, 7 (2011).
5 C. I. Kim, K. B. Kim, J. H. Jeon, Y. H. Jeong, J. H. Cho, J. H. Paik, I. S. Kang, M. Y. Lee, B. J. Choi, Y. B. Cho, S. S. Park, S. Nahm, and Y. J. Lee, J. KIEEME, 25, 7 (2012).
6 H. Shen, J. Qiu, and M. Balsi, Sensor. Actuat., A169, 178 (2011).
7 S. Priya and D. J. Inman, Energy Harvesting Technologies (Springer, New York, 2009).
8 A. Erturk and D. J. Inman, Piezoelectric Energy Harvesting (John Wiley & Sons, United Kingdom, 2011).
9 X. Gao, W. H. Shih, and W. Y. Shih, Appl. Phys. Lett., 97, 233503 (2010).   DOI   ScienceOn
10 W. G. Li and S. He, IEEE Trans. Ind. Electron., 57, 868 (2010).   DOI
11 H. J. Sun and J. H. Lee, Bulletin of KIEEME, 20, 3 (2007).
12 H. C. Song, C. Y. Gang, and S. J. Yoon, Bulletin of KIEEME, 23, 28 (2010).
13 S. Roundy, P. K. Wright, and J. Rabaey, Comput. Commun., 26, 1131 (2003).   DOI   ScienceOn
14 S. Priya, IEEE, 57, 12 (2010).
15 R. A. Islam and S. Priya, J. Am. Ceram. Soc., 89, 3147 (2006).   DOI
16 I. T. Seo, Y. J. Cha, I. Y. Kang, J. H. Choi, S. Nahm, T. H. Seung, and J. H. Paik, J. Am. Ceram. Soc., 94, 1 (2011).   DOI
17 C. I. Kim, Y. H. Jang, Y. H. Jeong, Y. J. Lee, J. H. Cho, J. H. Paik, and S. Nahm, Appl. Phys. Express, 5, 037101 (2012).   DOI