Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.12.939

Characterization of Sandwiched MIM Capacitors Under DC and AC Stresses: Al2O3-HfO2-Al2O3 Versus SiO2-HfO2-SiO2  

Kwak, Ho-Young (Department of Electronics Engineering, Chungnam University)
Kwon, Hyuk-Min (Department of Electronics Engineering, Chungnam University)
Kwon, Sung-Kyu (Department of Electronics Engineering, Chungnam University)
Jang, Jae-Hyung (Department of Electronics Engineering, Chungnam University)
Lee, Hwan-Hee (Department of Electronics Engineering, Chungnam University)
Lee, Song-Jae (Department of Electronics Engineering, Chungnam University)
Go, Sung-Yong (DMS Co., Ltd.)
Lee, Weon-Mook (DMS Co., Ltd.)
Lee, Hi-Deok (Department of Electronics Engineering, Chungnam University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.12, 2011 , pp. 939-943 More about this Journal
Abstract
In this paper, reliability of the two sandwiched MIM capacitors of $Al_2O_3-HfO_2-Al_2O_3$ (AHA) and $SiO_2-HfO_2-SiO_2$ (SHS) with hafnium-based dielectrics was analyzed using two kinds of voltage stress; DC and AC voltage stresses. Two MIM capacitors have high capacitance density (8.1 fF/${\mu}m^2$ and 5.2 fF/${\mu}m^2$) over the entire frequency range and low leakage current density of ~1 nA/$cm^2$ at room temperature and 1 V. The charge trapping in the dielectric shows that the relative variation of capacitance (${\Delta}C/C_0$) increases and the variation of voltage linearity (${\alpha}$/${\alpha}_0$) gradually decreases with stress-time under two types of voltage stress. It is also shown that DC voltage stress induced greater variation of capacitance density and voltage linearity than AC voltage stress.
Keywords
High-k; $Al_2O_3-HfO_2-Al_2O_3$; $SiO_2-HfO_2-SiO_2$; AC stress; Charge trapping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Remmel, P. Ramprasad, and J. Walls, Proc. Int. Rel. Phys. Symp., 277 (2003).
2 X. Yu, C. Zhu, H. Hu, A. Chin, M. F. fi, H. J. Cho, D. L. Kwong, P. D. Foo, and M. B. Yu, IEEE Electron Device Lett., 24, 63 (2003).   DOI
3 T. H. Pemg, C. H. Chien, C. W. Chen, P. Lehnen, and C. Y. Chang, Thin Solid Films, 515, 526 (2006).   DOI
4 S. B. Chen, C. H. Lai, Albert Chin, J. C. Hsieh, and J. Liu, IEEE Electron Device Lett., 23, 185 (2002).   DOI
5 H. M. Kwon, I. S. Han, S. U. Park, J. D. Bok, Y. J. Jung, H. S. Shin, C. Y. Kang, B. H. Lee, R. Jammy, G. W. Lee, and H. D. Lee, Jpn. J. Appl. Phys., 50, 04DD02-1 (2011).   DOI
6 M. Y. Yang, D. S. Yu, and A. Chin, Electrochem. Solid State Lett., 151, F162 (2004)
7 H. Hu, C. Zhu, Y. F. Lu, M. F. Li, M. F. Fi. B. J. Cho, and W. K. Choi, IEEE Electron Device Lett., 23, 514 (2002).   DOI
8 S. U. Park, H. K. Kwon, I. S. Han, Y. J. Jung, H. Y. Kwak, W. I. Choi, M. L. Ha, J. I. Lee, C. Y. Kang, B. H. Lee. R. Jammy, and H. D. Lee, Jpn. J. Appl. Phys., 50, 10PB06 (2011).   DOI
9 S. H. Wu, C. K. Deng, T. H. Hou, and B. S. Chiou, Jpn. J. Appl. Phys., 49, 04DB16 (2010).   DOI
10 K. C. Chinag, C. H. Cheng, K. Y. Jhou, H. C. Pan, C. N. Hsiao, C. P. Chou, S. P. MeAlister, and H. L. Hwang, IEEE Electron Device Lett., 28, 694 (2007).   DOI
11 S. J. Kim, B. J. Cho, M. F. Li, X. Yu, C. Zhu, A. Chin, and D. L. Kwong, IEEE Electron Device Lett., 24, 387 (2002).
12 C. T. Black, K. W. Guarini, Y. Zhang, H. Kim, J. Benedict, E. Sikorski, I. V. Banich, and K. R. Milkove, IEEE Electron Device Lett., 25, 622 (2004).   DOI
13 H. Hu, C. Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M. F. Li, B. J. Cho, W. K. Choi, and N. Yakovlev, J. Appl. Phys., 94, 551 (2003).   DOI