Browse > Article
http://dx.doi.org/10.4313/JKEM.2008.21.7.615

Analysis of Charge Transfer Mechanism in Molecular Memory Device using Temperature-dependent Electrical Measurement  

Choi, Kyung-Min (경원대학교 전자공학과)
Koo, Ja-Ryong (경원대학교 전자공학과)
Kim, Young-Kwan (홍익대학교 정보디스플레이공학과)
Kwon, Sang-Jik (경원대학교 전자공학과)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.21, no.7, 2008 , pp. 615-619 More about this Journal
Abstract
A molecular memory device which has a structure of Al/$Al_2O_3$/ASA-15 LB monolayer/Ti/Al device, was fabricated. To study a charge transfer mechanism of molecular memory devices, current density-voltage (J-V) characteristics were measured at an increasing temperature range from 10 K to 300 K with an interval of 30 K. Strong temperature-dependent electrical property and tunneling through organic monolayer at low bias (below 0.5 V) were appeared. These experimental data were fitted by using a theoretical formula such as the Simmons model. In comparison between the theoretical and the experimental results, it was verified that the fitting results using the Simmons model about direct tunneling was fairly fitted below 0.5 V at both 300 K and 10 K. Hopping conduction was also dominant at all voltage range above 200 K due to charges trapped by defects located within the dielectric stack, including the $Al_2O_3$, organic monolayer and Ti interfaces.
Keywords
Molecular memory; Direct tunneling; Hopping conduction; Simmons model;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. Li, D. R. Stewart, J. O. Jeppesen, K. A. Nielsen, J. F. Stoddart, and R. S. Williams, 'Nanoscale molecular-switch crossbar circuits', Nanotechnol., Vol. 14, p. 462, 2003   DOI   ScienceOn
2 D. R. Stewart, D. A. A. Ohlberg, P. A. Beck, Y. Chen, R. S. Williams, J. O. Jeppesen, K. A. Nielsen, and J. F. Stoddart, 'Molecule-independent electrical switching in Pt/organic monolayer/Ti devices', Nano Lett., Vol. 4, p. 133, 2004   DOI   ScienceOn
3 C. W. Tang and S. A. VanSlyke, 'Organic electroluminescent diodes', Appl. Phys. Lett., Vol. 51, p. 913, 1987   DOI
4 J. G. Simmons, 'Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film', J. Appl. Phys., Vol. 34, p. 1793, 1963   DOI
5 S. C. Chang, Z. Li, C. N. Lau, B. Larade, and R. S. Williams, 'Investigation of a model molecular-electronic rectifier with an evaporated Ti-metal top contact', Appl. Phys. Lett., Vol. 83, p. 3198, 2003   DOI   ScienceOn
6 E. E. Polymeropoulos and J. Sagiv, 'Electrical conduction through adsorbed monolayers', J. Chem. Phys., Vol. 69, p. 1836, 1978   DOI
7 J. R. Koo, S. W. Pyo, J. H. Kim, D. Gong, S. Y. Kim, J. H. Seo, and Y. K. Kim, 'Improved yield in molecular electronic devices using amino-style molecules', Curr. Appl. Phys., Vol. 7, p. 384, 2007   DOI   ScienceOn
8 P. K. Hansma, 'Tunneling Spectroscopy', Plenum, New York, p. 312, 1982
9 H. Klauk, D. J. Gundlach, J. A. Nichols, and T. N. Jackson, 'Pentacene organic thin-film transistors for circuit and display applications', IEEE Trans. Electron Dev., Vol. 46, p. 1258, 1999   DOI   ScienceOn