Browse > Article

고성능 페로브스카이트 소자 구조 설계를 위한 재료 공학  

Kim, Byeong-Gi (중앙대학교 융합공학과)
Im, Ji-Hyeon (중앙대학교 융합공학과)
Kim, Jin-Yeong (중앙대학교 융합공학과)
Cheon, Ji-Yun (중앙대학교 융합공학과)
Wang, Dong-Hwan (중앙대학교 융합공학과)
Publication Information
Electrical & Electronic Materials / v.35, no.5, 2022 , pp. 6-17 More about this Journal
Keywords
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Min, D. Y. Lee, J. Kim, G. Kim, K. S. Lee, J. Kim, M. J. Paik, Y. K. Kim, K. S. Kim, M. G. Kim, T. J. Shin, and S. Il Seok, Nature, 598, 444 (2021). DOI https://doi.org/10.1038/s41586-021-03964-8.   DOI
2 J. H. Heo, H. J. Han, D. Kim, T. K. Ahn, and S. H. Im, Energy Environ. Sci., 8, 1602 (2015). DOI https://doi.org/10.1039/C5EE00120J.   DOI
3 Z. Li, B. Li, X. Wu, S. A. Sheppard, S. Zhang, D. Gao, N. J. Long, and Z. Zhu, Science, 376, 416 (2022). DOI https://doi.org/10.1126/science.abm8566.   DOI
4 L. Lin, T. W. Jones, T. C. J. Yang, N. W. Duffy, J. Li, L. Zhao, B. Chi, X. Wang, and G. J. Wilson, Adv. Funct. Mater. 31, 2008300 (2021). 2008300. DOI https://doi.org/10.1002/adfm.202008300.   DOI
5 X. Hu, C. Liu, Z. Zhang, X. F. Jiang, J. Garcia, C. Sheehan, L. Shui, S. Priya, G. Zhou, S. Zhang, and K. Wang, Adv. Sci. 7, 2001285 (2020). DOI https://doi.org/10.1002/advs.202001285.   DOI
6 J. Lim, W. Jang, M. S. Kim, M. Ji, Y. I. Lee, and D. H. Wang, J. Alloys Compd. 846, 156329 (2020). DOI https://doi.org/10.1016/j.jallcom.2020.156329.   DOI
7 Z. Jia, H. Zhong, J. Shen, Z. Yu, J. Tao, S. Yin, X. Liu, S. Chen, S. Yang, and W. Kong, Chem. Eng. J., 446 136897 (2022). DOI https://doi.org/10.1016/j.cej.2022.136897   DOI
8 X. Zhou, M. Hu, C. Liu, L. Zhang, X. Zhong, X. Li, Y. Tian, C. Cheng, and B. Xu, Nano Energy, 63 103866 (2019). DOI https://doi.org/10.1016/j.nanoen.2019.103866   DOI
9 Y. Li, H. Xie, E. L. Lim, A. Hagfeldt, and D. Bi, Adv. Energy Mater. 12, 2102730 (2022). DOI https://doi.org/10.1002/aenm.202102730.   DOI
10 A. K. Jena, A. Kulkarni, and T. Miyasaka, Chem. Rev. 119, 3036 (2019). DOI https://doi.org/10.1021/acs.chemrev.8b00539.   DOI
11 S. Cacovich, G. Vidon, M. Degani, M. Legrand, L. Gouda, J. B. Puel, Y. Vaynzof, J. F. Guillemoles, D. Ory, and G. Grancini, Nat Commun 13, 2868 (2022). DOI https://doi.org/10.1038/s41467-022-30426-0   DOI
12 C. Zhang, H. Gong, Q. Song, C. Liang, F. You, Z. He, and D. Li, Org. Electron. 108, 106548 (2022). DOI https://doi.org/10.1016/j.orgel.2022.106548.   DOI
13 Q. Hu, W. Chen, W. Yang, Y. Li, Y. Zhou, B. W. Larson, J. C. Johnson, Y. H. Lu, W. Zhong, J. Xu, L. Klivansky, C. Wang, M. Salmeron, A. B. Djurisic, F. Liu, Z. He, R. Zhu, and T. P. Russell, Joule. 4, 1575 (2020). DOI https://doi.org/10.1016/j.joule.2020.06.007.   DOI
14 C. Li, F. Xu, Y. Li, N. Li, H. Yu, B. Yuanb, Z. Chen, L. Li, and B. Cao, Sol. Energy. 233, 271 (2022). DOI https://doi.org/10.1016/j.solener.2022.01.035.   DOI
15 T. Li, Y. Wu, Z. Liu, Y. Yang, H. Luo, L. Li, P. Chen, X. Gao, and H. Tan, Nanotechnology 33, 375205 (2022). DOI http://doi.org/10.1088/1361-6528/ac76d5.   DOI
16 X. Zheng, J. Troughton, N. Gasparini, Y. Lin, M. Wei, Y. Hou, J. Liu, K. Song, Z. Chen, C. Yang, B. Turedi, A. Y. Alsalloum, J. Pan, J. Chen, A. A. Zhumekenov, T. D. Anthopoulos, Y. Han, D. Baran, and O. M. Bakr, Joule, 3, 1963 (2019). DOI https://doi.org/10.1016/j.joule.2019.05.005.   DOI
17 J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde, and A. Walsh, Nano Lett., 14, 2584 (2014). DOI https://doi.org/10.1021/nl500390f.   DOI
18 W. Yang, R. Su, D. Luo, Q. Hu, F. Zhang, Z. Xu, Z. Wang, J. Tang, Z. Lv, X. Yang, Y. Tu, W. Zhang, H. Zhong, Q. Gong, T. P. Russell, and R. Zhu, Nano Energy., 67, 104189 (2020). DOI https://doi.org/10.1016/j.nanoen.2019.104189.   DOI
19 N. G. Park, Mater. Today, 18, 65 (2015). DOI https://doi.org/10.1016/j.mattod.2014.07.007   DOI
20 National Renewable Energy Labs (NREL), Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/cell-efficiency.html. (2022).
21 A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, J. Am. Chem. Soc., 131, 6050 (2009). DOI https://doi.org/10.1021/ja809598r.   DOI
22 A. Ullah, K. H. Park, H. D. Nguyen, Y. Siddique, S. F. A. Shah, H. Tran, S. Park, S. I. Lee, K. K. Lee, C. H. Han, K. Kim, S. J. Ahn, I. Jeong, Y. S. Park, and S. Hong, Adv. Energy Mater., 12, 2103175 (2022). DOI https://doi.org/10.1002/aenm.202103175.   DOI
23 Y. Wang, C. Duan, J. Li, W. Han, M. Zhao, L. Yao, Y. Wang, C. Yan, and T. Jiu, ACS Appl. Mater. Interfaces. 10, 20128 (2018), 20128-20135. DOI https://doi.org/10.1021/acsami.8b03444.   DOI
24 Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang, and A. K. Y. Jen, Adv. Mater. 28, 6478 (2016). DOI https://doi.org/10.1002/adma.201600619.   DOI
25 Y. Zhao, Q. Ye, Z. Chu, F. Gao, X. Zhang, and J. You, Energy Environ. Mater. 2, 93 (2019). DOI https://doi.org/10.1002/eem2.12042.   DOI
26 W. Chen, F. Z. Liu, X. Y. Feng, A. B. Djurisic, W. K. Chan, and Z. B. He, Adv. Energy Mater. 7, 1700722 (2017). DOI https://doi.org/10.1002/aenm.201700722.   DOI
27 C. Xiao, Q. Zhao, C. Jiang, Y. Sun, M. M. Al-Jassim, S. U. Nanayakkara, and J. M. Luther, Nano Energy, 78, 105319 (2020). DOI https://doi.org/10.1016/j.nanoen.2020.105319.   DOI
28 L. Xie, Z. Cao, J. Wang, A. Wang, S. Wang, Y. Cui, Y. Xiang, X. Niu, F. Hao, and L. Ding, Nano Energy 74, 104846 (2020). DOI https://doi.org/10.1016/j.nanoen.2020.104846.   DOI
29 H. Zhang, Z. Ren, K. Liu, M. Qin, Z. Wu, D. Shen, Y. Zhang, H. T. Chandran, J. Hao, C. S. Lee, X. Lu, Z. Zheng, and J. Huang, G. Li, Adv. Mater. 2204366 (2022). DOI https://doi.org/10.1002/adma.202204366.   DOI
30 J. Cao, H. L. Loi, Y. Xu, X. Guo, N. Wang, C. K. Liu, T. Wang, H. Cheng, Y. Zhu, M. G. Li, W. Y. Wong, and F. Yan, Adv. Mater. 34, 2107729 (2022). DOI https://doi.org/10.1002/adma.202107729.   DOI
31 C. S. Ponseca, T. J. Savenije, M. Abdellah, K. Zheng, A. Yartsev, T. Pascher, T. Harlang, P. Chabera, T. Pullerits, A. Stepanov, J. P. Wolf, and Sundstrom, V., J. Am. Chem. Soc., 136, 5189 (2014). DOI https://doi.org/10.1021/ja412583t.   DOI