Browse > Article

양자광원 기술 연구 동향  

Park, Seok-In (한국과학기술연구원 광전소재연구단)
Song, Jin-Dong (한국과학기술연구원 광전소재연구단)
Publication Information
Electrical & Electronic Materials / v.33, no.4, 2020 , pp. 6-15 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. H. Compton, Phys. Rev. 21, 483 (1923).   DOI
2 Clauser, John F. "Experimental distinction between the quantum and classical field-theoretic predictions for the photoelectric effec" (1974).
3 Brassard, G., Lutkenhaus, N., Mor, T. & Sanders, B. C. Limitations on practical quantum cryptography. Phys. Rev. Lett. 85, 1330-1333 (2000).   DOI
4 Broome, M. A. et al. Photonic boson sampling in a tunable circuit. Science 339, 794-798 (2013).   DOI
5 Spring, J. B. et al. Boson sampling on a photonic chip. Science 339, 798-801 (2013).   DOI
6 Spagnolo, N. et al. Experimental validation of photonic boson sampling. Nat. Photon. 8, 615-620 (2014).   DOI
7 Tillmann, M. et al. Experimental boson sampling. Nat. Photon. 7, 540-544 (2013).   DOI
8 D. ter Haar, The Old Quantum Theory (Pergamon, Oxford, 1967).
9 A. Einstein, Ann. Phys. 17, 132 (1905).   DOI
10 Henrik Mantynen*, Nicklas Anttu, Zhipei Sun and Harri Lipsanen Nanophotonics 8(5) (2019).
11 Pascale Senellart, Glenn Solomon and Andrew White, Nature Nanotechnology 12, 1026-1039 (2017).   DOI
12 D. Magde and H. Mahr, "Study in Ammonium Dihydrogen Phosphate of SpontaneousParametric Interaction Tunable from 4400 to 16 000 A," Phys. Rev. Lett. 18, 905-907 (1967).Chapter $\mid$ 11 Parametric Down-Conversion 405.   DOI
13 S. A. Akhmanov, V. V. Fadeev, R. V. Khoklov, and O.N. Chunaev, Sov. Phys. JETP Lett. 6,85 (1967).
14 R.L. Byer and S.E. Harris, "Power and Bandwidth of Spontaneous Parametric Emission," Phys. Rev. 168, 1064 (1968).   DOI
15 D. C. Burnham and D. L. Weinberg, "Observation of Simultaneity in Parametric Productionof Optical Photon Pairs," Phys. Rev. Lett. 25, 84-87 (1970).   DOI
16 Y. H. Shih and C. O. Alley, "New Type of Einstein-Podolsky-Rosen-Bohm Experiment UsingPairs of Light Quanta Produced by Optical Parametric Down Conversion," Phys. Rev. Lett. 61, 2921-2924 (1988).   DOI
17 R. Ghosh and L. Mandel, "Observation of Nonclassical Effects in the Interference of TwoPhotons," Phys. Rev. Lett. 59, 1903-1905 (1987).   DOI
18 C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of Subpicosecond Time IntervalsBetween Two Photons by Interference," Phys. Rev. Lett. 59, 2044-2046 (1987).   DOI
19 Dorilian L' opez Mago,,Implementation of a twophoton Michelson interferometer for Quantum-Optical Coherence Tomography 13, Instituto Tecnologico y de Estudios Superiores de Monterrey' Campus Monterrey May (2012).
20 P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, "NewHigh- Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75,4337-4341 (1995).   DOI
21 F. Jelezko and J. Wrachtrup, physica status solidi (a) 203, 32073225 (2006).
22 T. P. M. Alegre, C. Santori, G. Medeiros-Ribeiro, R.G. Beausoleil, "Polarization-Selective Excitation of Nitrogen Vacancy Centers in Diamond," Phys. Rev. B 76, 165205 (2007).   DOI
23 Aharonovich, I., Englund, D. & Toth, M. Solidstate single-photon emitters. Nature Photon 10, 631-641 (2016).   DOI
24 Couteau, C. et al. Correlated photon emission from a single II-VI quantum dot. Appl. Phys. Lett. 85, 6251-6253 (2004).   DOI
25 Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282-2285 (2000).   DOI
26 Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Homogeneous linewidths in the optical spectrum of a single gallium arsenide quantum dot. Science 273, 87-90 (1996).   DOI
27 Sebald, K. et al. Single-photon emission of CdSe quantum dots at temperatures up to 200 K. Appl. Phys. Lett. 81, 2920-2922 (2002).   DOI
28 Holmes, M. J., Choi, K., Kako, S., Arita, M. & Arakawa, Y. Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14, 982-986 (2014).   DOI
29 J. Kim, O. Benson, H. Kan, and Y. Yamamoto, Nature (London) 397, 500 (1999).   DOI
30 M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Rev. Sci. Instrum. 82, 071101 (2011).   DOI
31 A. J. Shields, Nature Photon. 1, 215 (2007).   DOI
32 E. Moreau, I. Robert, J. Gerard, I. Abram, L. Manin, and V. Thierry-Mieg, Appl. Phys. Lett. 79, 2865 (2001).   DOI
33 M. Pelton, C. Santori, J. Vuckovic, B. Zhang, G. Solomon, J. Plant, and Y. Yamamoto, Phys. Rev. Lett. 89, 233602 (2002).   DOI
34 A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. Krenner, R. Meyer, G. Bohm, and J. Finley, Phys. Rev. B 71, 241304(R) (2005).   DOI
35 S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, Appl. Phys. Lett. 87, 163107(2005).   DOI
36 V. Scarani et al., "Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations," Phys. Rev. Lett. 92(5), 057901 (2004).   DOI
37 D. Press, S. Goetzinger, S. Reitzenstein, C. Hofmann, A. Loeffler, M. Kamp, A. Forchel, and Y. Yamamoto, Phys. Rev. Lett. 98, 117402 (2007).   DOI
38 E. M. Purcell, Phys. Rev. 69, 681 (1946).   DOI
39 Huber, D., Reindl, M., Huo, Y. et al. Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots. Nat Commun 8, 15506 (2017).   DOI
40 B. Lounis and M. Orrit, Reports on Progress in Physics 68, 1129 (2005).   DOI
41 A. N. Boto et al., Physical Review Letters 85, 2733 (2000).   DOI
42 H. K. Lo, X. Ma, and K. Chen, "Decoy state quantum key distribution," Phys. Rev. Lett. 94(23), 230504 (2005).   DOI
43 A. B. Arons and M. B. Peppard, Am. J. Phys. 33, 367 (1965).   DOI