Browse > Article
http://dx.doi.org/10.1186/s42649-020-00042-7

Sublimable materials facilitate the TEM sample preparation of oil-soluble nanomaterials  

Yu-Hao Deng (Academy for Advanced Interdisciplinary Studies, Peking University)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 21.1-21.3 More about this Journal
Abstract
Sample preparation is significantly important to the high-resolution transmission electron microscopy (HRTEM) characterization of nanomaterials. However, many general organic solvents can dissolve the necessary organic polymer support layer in TEM grid, which causes it difficult to obtain high-quality samples of oil-soluble nanomaterials. In this study, a new sample preparation method for oil-soluble nanomaterials has been developed by using the sublimable material as a transition layer. Experiments also show that there is no damage to TEM grids and high-quality HRTEM images can be obtained via this method. This approach paves the way to applicable HRTEM sample preparation of oil-soluble nanomaterials.
Keywords
Transmission electron microscopy; Sample preparation; Oil-soluble nanomaterial; Sublimable material;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ayache J, Beaunier L, Boumendil J, et al. Sample preparation handbook for transmission electron microscopy: techniques[M]. Springer Science & Business Media, (2010). https://www.springer.com/gp/book/9780387981819.
2 H.W. Cha, M.C. Kang, K. Shin, et al., Transmission electron microscopy specimen preparation of delicate materials using Tripod polisher. Appl. Microsc. 46(2), 110-115 (2016). https://doi.org/10.9729/AM.2016.46.2.110   DOI
3 M. Duchamp, Q. Xu, R.E. Dunin-Borkowski, Convenient preparation of high-quality specimens for annealing experiments in the transmission electron microscope. Microsc. Microanal. 20(6), 1638-1645 (2014). https://doi.org/10.1017/S1431927614013476   DOI
4 N.Y. Kim, G.H. Ryu, H.J. Park, et al., An improved specimen preparation of porous powder materials for transmission electron microscopy. Microsc. Microanal. 20(S3), 366-367 (2014). https://doi.org/10.1017/S1431927614003559   DOI
5 W. Regan, N. Alem, B. Aleman, et al., A direct transfer of layer-area graphene. Appl. Phys. Lett. 96(11), 113102 (2010). https://doi.org/10.1063/1.3337091   DOI
6 C.H. Park, H.W. Kim, I.J. Rhyu, et al., How to get well-preserved samples for transmission electron microscopy. Appl. Microsc. 46(4), 188-192 (2016). https://doi.org/10.9729/AM.2016.46.4.188   DOI
7 K.L. Stinson-Bagby, R. Roberts, E.J. Foster, Effective cellulose nanocrystal imaging using transmission electron microscopy. Carbohydr. Polym. 186, 429-438 (2018). https://doi.org/10.1016/j.carbpol.2018.01.054   DOI
8 J.H. Warner, M.H. Rummeli, A. Bachmatiuk, et al., Examining co-based nanocrystals on graphene using low-voltage aberration-corrected transmission electron microscopy. ACS Nano 4(1), 470-476 (2010). https://doi.org/10.1021/nn901371k   DOI
9 M.T. Kennedy, B.A. Korgel, H.G. Monbouquette, et al., Cryo-transmission electron microscopy confirms controlled synthesis of cadmium sulfide nanocrystals within lecithin vesicles. Chem. Mater. 10(8), 2116-2119 (1998). https://doi.org/10.1021/cm970744k   DOI
10 G.J. Kearns, E.W. Foster, J.E. Hutchison, Substrates for direct imaging of chemically functionalized SiO2 surfaces by transmission electron microscopy. Anal. Chem. 78(1), 298-303 (2006). https://doi.org/10.1021/ac051459k   DOI
11 R.R. Nair, P. Blake, J.R. Blake, et al., Graphene as a transparent conductive support for studying biological molecules by transmission electron microscopy. Appl. Phys. Lett. 97(15), 153102 (2010). https://doi.org/10.1063/1.3492845   DOI
12 I. Moreels, Y. Justo, B. De Geyter, et al., Size-tunable, bright, and stable PbS quantum dots: A surface chemistry study. ACS Nano 5(3), 2004-2012 (2011). https://doi.org/10.1021/nn103050w   DOI