Browse > Article
http://dx.doi.org/10.1186/s42649-020-00039-2

Methods to evaluate the twin formation energy: comparative studies of the atomic simulations and in-situ TEM tensile tests  

Hong-Kyu Kim (Advanced Analysis Center, Korea Institute of Science and Technology)
Sung-Hoon Kim (Advanced Analysis Center, Korea Institute of Science and Technology)
Jae-Pyoung Ahn (Advanced Analysis Center, Korea Institute of Science and Technology)
Publication Information
Applied Microscopy / v.50, no., 2020 , pp. 19.1-19.9 More about this Journal
Abstract
Deformation twinning, one of the major deformation modes in a crystalline material, has typically been analyzed using generalized planar fault energy (GPFE) curves. Despite the significance of these curves in understanding the twin nucleation and its effect on the mechanical properties of crystals, their experimental validity is lacking. In this comparative study based on the first-principles calculation, molecular dynamics simulation, and quantitative in-situ tensile testing of Al nanowires inside a transmission electron microscopy system, we present both a theoretical and an experimental approach that enable the measurement of a part of the twin formation energy of the perfect Al crystal. The proposed experimental method is also regarded as an indirect but quantitative means for validating the GPFE theory.
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.L.W. Cross, A. Schirmeisen, P. Grutter, U.T. Durig, Plasticity, healing and shakedown in sharp-asperity nanoindentation. Nat. Mater. 5, 370-376 (2006). https://doi.org/10.1038/nmat1632   DOI
2 D.E. Hurtado, M. Ortiz, Surface effects and the size-dependent hardening and strengthening of nickel micropillars. J. Mech. Phys. Solids 60, 1432-1446 (2012). https://doi.org/10.1016/j.jmps.2012.04.009   DOI
3 B. Hwang, M. Kang, S. Lee, C.R. Weinberger, P. Loya, J. Lou, S.H. Oh, B. Kim, S.M. Han, Effect of surface energy on size-dependent deformation twinning of defect-free Au nanowires. Nanoscale 7, 15657-15664 (2015). https://doi.org/10.1039/c5nr03902a   DOI
4 Z.H. Jin, S.T. Dunham, H. Gleiter, H. Hahn, P. Gumbsch, A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64, 605-608 (2011). https://doi.org/10.1016/j.scriptamat.2010.11.033   DOI
5 S.-H. Kim, J.-H. Park, H.-K. Kim, J.-P. Ahn, D.-M. Whang, J.-C. Lee, Twin boundary sliding in single crystalline Cu and Al nanowires. Acta Mater. 196, 69-77 (2020). https://doi.org/10.1016/j.actamat.2020.06.028   DOI
6 G. Kresse, J. Hafner, Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115-13118 (1993). https://doi.org/10.1103/physrevb.48.13115   DOI
7 J.S. Langer, E. Bouchbinder, T. Lookman, Thermodynamic theory of dislocation-mediated plasticity. Acta Mater. 58, 3718-3732 (2010). https://doi.org/10.1016/j.actamat.2010.03.009   DOI
8 M.S. Daw, M.I. Baskes, Semiempirical, quantum mechanical calculation of hydrogen Embrittlement in metals. Phys. Rev. Lett. 50, 1285-1288 (1983). https://doi.org/10.1103/physrevlett.50.1285   DOI
9 S. Lee, J. Im, Y. Yoo, E. Bitzek, D. Kiener, G. Richter, B. Kim, S.H. Oh, Reversible cyclic deformation mechanism of gold nanowires by twinning-detwinning transition evidenced from in situ TEM. Nat. Commun. 5, 1-10 (2014). https://doi.org/10.1038/ncomms4033   DOI
10 M. Jo, Y.M. Koo, B.-J. Lee, B. Johansson, L. Vitos, S.K. Kwon, Theory for plasticity of face-centered cubic metals. Proc. Natl. Acad. Sci. 111, 6560-6565 (2014). https://doi.org/10.1073/pnas.1400786111   DOI
11 J.W. Lee, M.G. Kang, B.S. Kim, B.H. Hong, D. Whang, S.W. Hwang, Single crystalline aluminum nanowires with ideal resistivity. Scr. Mater. 63, 1009-1012 (2010). https://doi.org/10.1016/j.scriptamat.2010.07.026   DOI
12 R. People, Physics and applications of GexSi1-x/Si strained-layer heterostructures. IEEE J. Quantum Electron. 22, 1696-1710 (1986). https://doi.org/10.1109/jqe.1986.1073152   DOI
13 S. Li, X. Ding, J. Li, X. Ren, J. Sun, E. Ma, High-efficiency mechanical energy storage and retrieval using interfaces in nanowires. Nano Lett. 10, 1774-1779 (2010). https://doi.org/10.1021/nl100263p   DOI
14 F.R. Nabarro, M.S. Duesbery, Dislocations in solids (Elsevier, Amsterdam, 2002)
15 S. Ogata, J. Li, S. Yip, Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71, 224102-224102 (2005). https://doi.org/10.1103/physrevb.71.224102   DOI
16 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1-19 (1995). https://doi.org/10.1006/jcph.1995.1039   DOI
17 G. Kresse, J. Furthmuller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15-50 (1996). https://doi.org/10.1016/0927-0256(96)00008-0   DOI
18 C.L. Kelchner, S.J. Plimpton, J.C. Hamilton, Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085-11088 (1998)
19 S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55, 6843-6851 (2007). https://doi.org/10.1016/j.actamat.2007.08.042   DOI
20 H.-K. Kim, S.-H. Kim, J.-P. Ahn, J.-C. Lee, Deformation criterion for face-centered-cubic metal nanowires. Mater. Sci. Eng. 736, 431-437 (2018a). https://doi.org/10.1016/j.msea.2018.08.108   DOI
21 G. Lu, N. Kioussis, V.V. Bulatov, E. Kaxiras, Generalized-stacking-fault energy surface and dislocation properties of aluminum. Phys. Rev. B 62, 3099-3108 (2000). https://doi.org/10.1103/physrevb.62.3099   DOI
22 V. Vitek, Intrinsic stacking faults in body-centered cubic. Acta Metallurgica Sin. Engl. Lett. 18, 773-786 (1968). https://doi.org/10.1007/s40195-015-0271-3   DOI
23 J.H. Seo, Y. Yoo, N.Y. Park, S.W. Yoon, H. Lee, S. Han, S.W. Lee, T.Y. Seong, S.C. Lee, K.B. Lee, P.R. Cha, H.S. Park, B. Kim, J.P. Ahn, Superplastic deformation of defect-free au nanowires via coherent twin propagation. Nano Lett. 11, 3499-3502 (2011). https://doi.org/10.1021/nl2022306   DOI
24 J.-H. Seo, H.S. Park, Y. Yoo, T.-Y. Seong, J. Li, J.-P. Ahn, B. Kim, I.-S. Choi, Origin of size dependency in coherent-twin-propagation-mediated tensile deformation of noble metal nanowires. Nano Lett. 13, 5112-5116 (2013). https://doi.org/10.1021/nl402282n   DOI
25 H.V. Swygenhoven, P.M. Derlet, A.G. Froseth, Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3, 399-403 (2004). https://doi.org/10.1038/nmat1136   DOI
26 H. Park, J. Zimmerman, Modeling inelasticity and failure in gold nanowires. Phys. Rev. B 72, 54106-54106 (2005). https://doi.org/10.1103/physrevb.72.054106   DOI
27 E.B. Tadmor, S. Hai, A Peierls criterion for the onset of deformation twinning at a crack tip. J. Mech. Phys. Solids 51, 765-793 (2003). https://doi.org/10.1016/s0022-5096(03)00005-x   DOI
28 L. Wang, Z. Liu, Z. Zhuang, Developing micro-scale crystal plasticity model based on phase field theory for modeling dislocations in heteroepitaxial structures. Int. J. Plast. 81, 267-283 (2016). https://doi.org/10.1016/j.ijplas.2016.01.010   DOI
29 Y.F. Wen, J. Sun, Generalized planar fault energies and mechanical twinning in gamma TiAl alloys. Scr. Mater. 68, 759-762 (2013). https://doi.org/10.1016/j.scriptamat.2012.12.032   DOI
30 X. Wu, Y.T. Zhu, E. Ma, Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: an experimental evaluation. Appl. Phys. Lett. 88, 121905-121905 (2006). https://doi.org/10.1063/1.2186968   DOI
31 P.E. Blochl, Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994). https://doi.org/10.1103/physrevb.50.17953   DOI
32 C. Brandl, P. Derlet, H.V. Swygenhoven, General-stacking-fault energies in highly strained metallic environments: Ab initio calculations. Phys. Rev. B 76, 54124-54124 (2007). https://doi.org/10.1103/physrevb.76.054124   DOI
33 J.W. Christian, V. Vitek, Dislocations and stacking faults. Rep. Prog. Phys. 33, 307-411 (1970). https://doi.org/10.1088/0034-4885/33/1/307   DOI
34 S. Kibey, L. Wang, J. Liu, H. Johnson, H. Sehitoglu, D. Johnson, Quantitative prediction of twinning stress in fcc alloys: application to Cu-Al. Phys. Rev. B 79, 214202-214202 (2009). https://doi.org/10.1103/physrevb.79.214202   DOI
35 Y. Sun, E. Kaxiras, Slip energy barriers in aluminium and implications for ductile-brittle behaviour. Philos. Mag. 75, 1117-1127 (1997). https://doi.org/10.1080/01418619708214014   DOI
36 T. Ezaz, H. Sehitoglu, H.J. Maier, Energetics of twinning in martensitic NiTi. Acta Mater. 59, 5893-5904 (2011). https://doi.org/10.1016/j.actamat.2011.05.063   DOI
37 S.-H. Kim, H.-K. Kim, J.-H. Seo, D.-M. Whang, J.-P. Ahn, J.-C. Lee, Deformation twinning of ultrahigh strength aluminum nanowire. Acta Mater. 160, 14-21 (2018b). https://doi.org/10.1016/j.actamat.2018.08.047   DOI
38 P.M. Anderson, J.P. Hirth, J. Lothe, Theory of dislocations (Cambridge University Press, Cambridge, 2017)
39 B.W. Jeong, J. Ihm, G.-D. Lee, Stability of dislocation defect with two pentagon-heptagon pairs in graphene. Phys. Rev. B 78, 165403 (2008). https://doi.org/10.1103/physrevb.78.165403   DOI
40 A.G. Froseth, P.M. Derlet, H.V. Swygenhoven, Twinning in nanocrystalline fee metals. Adv. Eng. Mater. 7, 16-20 (2005). https://doi.org/10.1002/adem.200400163   DOI