Browse > Article
http://dx.doi.org/10.9729/AM.2018.48.4.81

Structural Studies of Respirasome by Cryo-Electron Microscopy  

Jeon, Tae Jin (Department of Bioengineering, College of Engineering, Hanyang University)
Kim, Ho Min (Graduate School of Medical Science & Engineering, Korea Advanced Institute of Science and Technology (KAIST))
Ryu, Seong Eon (Department of Bioengineering, College of Engineering, Hanyang University)
Publication Information
Applied Microscopy / v.48, no.4, 2018 , pp. 81-86 More about this Journal
Abstract
The respiratory chain complex forms a supercomplex (SC) in the inner mitochondrial membrane. This complex facilitates the process of electron transfer to produce the proton gradient used to synthesize ATP. Understanding the precise structure of the SC is considered an important challenge. However, it has not yet been reported. The development of a Cryo-electron microscopy (EM) technique provides an effective way to obtain high-resolution micrographs to determine the high-resolution three-dimensional structure of biomolecules. In this brief review, the currently reported Cryo-EM structures of the mammalian respirasome have been described in order to establish a direction for further research in the respiratory system.
Keywords
Cryo-electron microscopy; Biomolecule structure; Respiratory chain complex; Respirasome;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Agip A A, Blaza J N, Bridges H R, Viscomi C, Rawson S, Muench S P, and Hirst J (2018) Cryo-EM structures of complex I from mouse heart mitochondria in two biochemically defined states. Nat. Struct. Mol. Biol. 25, 548-556.   DOI
2 Ai Q, Jing Y, Jiang R, Lin L, Dai J, Che Q, Zhou D, Jia M, Wan J, and Zhang L (2014) Rotenone, a mitochondrial respiratory complex I inhibitor, ameliorates lipopolysaccharide/D-galactosamine-induced fulminant hepatitis in mice. Int. Immunopharmacol. 21, 200-207.   DOI
3 Alam M and Schmidt W J (2004) Mitochondrial complex I inhibition depletes plasma testosterone in the rotenone model of Parkinson's disease. Physiol. Behav. 83, 395-400.   DOI
4 Althoff T, Mills D J, Popot J L, and Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex $I_1III_2IV_1$. EMBO J. 30, 4652-4664.   DOI
5 Angerer H, Zwicker K, Wumaier Z, Sokolova L, Heide H, Steger M, Kaiser S, Nubel E, Brutschy B, Radermacher M, Brandt T, and Zickermann V (2011) A scaffold of accessory subunits links the peripheral arm and the distal proton-pumping module of mitochondrial complex I. Biochem. J. 437, 279-288.   DOI
6 Baradaran R, Berrisford J M, Minhas G S, and Sazanov L A (2013) Crystal structure of the entire respiratory complex I. Nature 494, 443-448.   DOI
7 Bianchi C, Fato R, Genova M L, Castelli G P, and Lenaz G (2003) Structural and functional organization of Complex I in the mitochondrial respiratory chain. BioFactors 18, 3-9.   DOI
8 Bianchi C, Genova M L, Castelli G P, and Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly - Kinetic evidence using flux control analysis. J. Biol. Chem. 279, 36562-36569.   DOI
9 Blaza J N, Serreli R, Jones A J, Mohammed K, and Hirst J (2014) Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc. Natl. Acad. Sci. USA 111, 15735-15740.   DOI
10 Blaza J N, Vinothkumar K R, and Hirst J (2018) Structure of the deactive state of mammalian respiratory complex I. Structure 26, 312-319.   DOI
11 Bonora M, Patergnani S, Rimessi A, De M E, Suski J M, Bononi A, Giorgi C, Marchi S, Missiroli S, Poletti F, Wieckowski M R, and Pinton P (2012) ATP synthesis and storage. Purinergic Signal 8, 343-357.   DOI
12 Carroll J, Fearnley I M, Shannon R J, Hirst J, and Walker J E (2003) Analysis of the subunit composition of complex I from bovine heart mitochondria. Mol. Cell. Proteomics 2, 117-126.   DOI
13 Carroll J, Fearnley I M, Skehel J M, Shannon R J, Hirst J, and Walker J E (2006) Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 281, 32724-32727.   DOI
14 Chouchani E T, Methner C, Nadtochiy S M, Logan A, Pell V R, Ding S, James A M, Cocheme H M, Reinhold J, Lilley K S, Partridge L, Fearnley I M, Robinson A J, Hartley R C, Smith R A, Krieg T, Brookes P S, and Murphy M P (2013) Cardioprotection by S-nitrosation of a cysteine switch on mitochondrial complex I. Nat. Med. 19, 753-759.   DOI
15 Chung J H and Kim H M (2017) The nobel prize in chemistry 2017: highresolution cryo-electron microscopy. Appl. Microsc. 47, 218-222.   DOI
16 Chung J M and Jung H S (2018) Cryo-electron tomography: a tool for in situ structural analysis of macromolecular complexes. Appl. Spectrosc. Rev. 53, 195-202.   DOI
17 Darrouzet E, Issartel J P, Lunardi J, and Dupuis A (1998) The 49-kDa subunit of NADH-ubiquinone oxidoreductase (Complex I) is involved in the binding of piericidin and rotenone, two quinone-related inhibitors. FEBS Lett. 431, 34-38.   DOI
18 Dudkina N V, Kudryashev M, Stahlberg H, and Boekema E J (2011) Interaction of complexes I, III, and IV within the bovine respirasome by single particle cryoelectron tomography. Proc. Natl. Acad. Sci. USA 108, 15196-15200.   DOI
19 Dudkina N V, Sunderhaus S, Boekema E J, and Braun H P (2008) The higher level of organization of the oxidative phosphorylation system: mitochondrial supercomplexes. J. Bioenerg. Biomembr. 40, 419-424.   DOI
20 Efremov R G, Baradaran R, and Sazanov L A (2010) The architecture of respiratory complex I. Nature 465, 441-445.   DOI
21 Enriquez J A (2016) Supramolecular organization of respiratory complexes. Annu. Rev. Physiol. 78, 533-561.   DOI
22 Fiedorczuk K, Letts J A, Degliesposti G, Kaszuba K, Skehel M, and Sazanov L A (2016) Atomic structure of the entire mammalian mitochondrial complex I. Nature 538, 406-410.   DOI
23 Gao X, Wen X, Esser L, Quinn B, Yu L, Yu C A, and Xia D (2003) Structural basis for the quinone reduction in the bc1 complex: a comparative analysis of crystal structures of mitochondrial cytochrome bc1 with bound substrate and inhibitors at the Qi site. Biochemistry 42, 9067-9080.   DOI
24 Grgic L, Zwicker K, Kashani-Poor N, Kerscher S, and Brandt U (2004) Functional significance of conserved histidines and arginines in the 49-kDa subunit of mitochondrial complex I. J. Biol. Chem. 279, 21193-21199.   DOI
25 Gu J, Wu M, Guo R, Yan K, Lei J, Gao N, and Yang M (2016) The architecture of the mammalian respirasome. Nature 537, 639-643.   DOI
26 Guo R, Zong S, Wu M, Gu J, and Yang M (2017) Architecture of human mitochondrial respiratory megacomplex $I_2III_2IV_2$. Cell 170, 1247-1257.   DOI
27 Hatefi Y (1985) The mitochondrial electron transport and oxidative phosphorylation system. Annu. Rev. Biochem. 54, 1015-1069.   DOI
28 Hirst J, Carroll J, Fearnley I M, Shannon R J, and Walker J E (2003) The nuclear encoded subunits of complex I from bovine heart mitochondria. Biochim. Biophys. Acta 1604, 135-150.   DOI
29 Iwata S, Lee J W, Okada K, Lee J K, Iwata M, Rasmussen B, Link T A, Ramaswamy S, and Jap B K (1998) Complete structure of the 11-subunit bovine mitochondrial cytochrome bc1 complex. Science 281, 64-71.   DOI
30 Jonckheere A I, Smeitink J A M, and Rodenburg R J T (2012) Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 35, 211-225.   DOI
31 Kashani-Poor N, Zwicker K, Kerscher S, and Brandt U (2001) A central functional role for the 49-kDa subunit within the catalytic core of mitochondrial complex I. J. Biol. Chem. 276, 24082-24087.   DOI
32 Fowler L R, and Richardson S H (1963) Studies on the electron transfer system. J. Biol. Chem. 238, 456-463.
33 Letts J A, Fiedorczuk K, and Sazanov L A (2016) The architecture of respiratory supercomplexes. Nature 537, 644-648.   DOI
34 Letts J A and Sazanov L A (2017) Clarifying the supercomplex: the higherorder organization of the mitochondrial electron transport chain. Nat. Struct. Mol. Biol. 24, 800-808.   DOI
35 Lopez-Fabuel I, Le Douce J, Logan A, James A M, Bonvento G, Murphy M P, Almeida A, and Bolanos J P (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc. Natl. Acad. Sci. USA 113, 13063-13068.   DOI
36 Maranzana E, Barbero G, Falasca A I, Lenaz G, and Genova M L (2013) Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid. Redox Signal. 19, 1469-1480.   DOI
37 Mitchell P (1975a) The protonmotive Q cycle: a general formulation. FEBS Lett. 59, 137-139.   DOI
38 Mitchell P (1975b) Protonmotive redox mechanism of the cytochrome b-c1 complex in the respiratory chain: protonmotive ubiquinone cycle. FEBS Lett. 56, 1-6.   DOI
39 Parey K, Brandt U, Xie H, Mills D J, Siegmund K, Vonck J, Kuhlbrandt W, and Zickermann V (2018) Cryo-EM structure of respiratory complex I at work. eLife 7, e39213.   DOI
40 Pettersen E F, Goddard T D, Huang C C, Couch G S, Greenblatt D M, Meng E C, and Ferrin T E (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612.   DOI
41 Pietras R, Sarewicz M, and Osyczka A (2016) Distinct properties of semiquinone species detected at the ubiquinol oxidation Q(o) site of cytochrome bc(1) and their mechanistic implications. J. R. Soc. Interface 13, 20160133.
42 Sarewicz M and Osyczka A (2015) Electronic connection between the quinone and cytochrome c redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol. Rev. 95, 219-243.   DOI
43 Sazanov L A (2015) A giant molecular proton pump: structure and mechanism of respiratory complex I. Nat. Rev. Mol. Cell Biol. 16, 375-388.
44 Sousa J S, Mills D J, Vonck J, and Kuhlbrandt W (2016) Functional asymmetry and electron flow in the bovine respirasome. eLife 5, e21290.   DOI
45 Tocilescu M A, Fendel U, Zwicker K, Kerscher S, and Brandt U (2007) Exploring the ubiquinone binding cavity of respiratory complex I. J. Biol. Chem. 282, 29514-29520.   DOI
46 Tocilescu M A, Zickermann V, Zwicker K, and Brandt U (2010) Quinone binding and reduction by respiratory complex I. Biochim. Biophys. Acta 1797, 1883-1890.   DOI
47 Vinothkumar K R, Zhu J, and Hirst J (2014) Architecture of mammalian respiratory complex I. Nature 515, 80-84.   DOI
48 Walker J E (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25, 253-324.   DOI
49 Wallace D C (2012) Mitochondria and cancer. Nat. Rev. Cancer 12, 685-698.   DOI
50 Watabe M and Nakaki T (2008) Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells. Mol. Pharmacol. 74, 933-940.   DOI
51 Wirth C, Brandt U, Hunte C, and Zickermann V (2016) Structure and function of mitochondrial complex I. Biochim. Biophys. Acta 1857, 902-914.   DOI
52 Wu M, Gu J, Guo R, Huang Y, and Yang M (2016) Structure of mammalian respiratory supercomplex $I_1III_2IV_1$. Cell 167, 1598-1609.   DOI
53 Zhu J, Vinothkumar K R, and Hirst J (2016) Structure of mammalian respiratory complex I. Nature 536, 354-358.   DOI
54 Zickermann V, Wirth C, Nasiri H, Siegmund K, Schwalbe H, Hunte C, and Brandt U (2015) Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347, 44-49.   DOI