Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.3.160

Recent Advances in Electron Crystallography  

Chung, Jeong Min (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Lee, Sangmin (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Jung, Hyun Suk (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Publication Information
Applied Microscopy / v.47, no.3, 2017 , pp. 160-164 More about this Journal
Abstract
Electron crystallography has been used as the one of powerful tool for studying the structure of biological macromolecules at high resolution which is sufficient to provide details of intramolecular and intermolecular interactions at near-atomic level. Previously it commonly uses two-dimensional crystals that are periodic arrangement of biological molecules, however recent studies reported a novel technical approach to electron crystallography of three-dimensional crystals, called micro electron-diffraction (MicroED) which involves placing the irregular and small sized protein crystals in a transmission electron microscope to determine the atomic structure. In here, we review the advances in electron crystallography techniques with several recent studies. Furthermore, we discuss the future direction of this structural approach.
Keywords
Electron crystallography; Protein structure; Transmission electron microscopy; Micro-electron diffraction; Structural biology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Nass K, Foucar L, Barends T R, Hartmann E, Botha S, Shoeman R L, Doak R B, Alonso-Mori R, Aquila A, Bajt S, Barty A, Bean R, Beyerlein K R, Bublitz M, Drachmann N, Gregersen J, Jonsson H O, Kabsch W, Kassemeyer S, Koglin J E, Krumrey M, Mattle D, Messerschmidt M, Nissen P, Reinhard L, Sitsel O, Sokaras D, Williams G J, Hau-Riege S, Timneanu N, Caleman C, Chapman H N, Boutet S, and Schlichting I (2015) Indications of radiation damage in ferredoxin microcrystals using high-intensity X-FEL beams. J. Synchrotron. Radiat. 22, 225-238.   DOI
2 Oshima A, Tani K, Toloue M M, Hiroaki Y, Smock A, Inukai S, Cone A, Nicholson B J, Sosinsky G E, and Fujiyoshi Y (2011) Asymmetric configurations and N-terminal rearrangements in connexin26 gap junction channels. J. Mol. Biol. 405, 724-735.   DOI
3 Paulino C, Wohlert D, Kapotova E, Yildiz O, and Kuhlbrandt W (2014) Structure and transport mechanism of the sodium/proton antiporter MjNhaP1. Elife 3, e03583.
4 Pope C R and Unger V M (2012) Electron crystallography--the waking beauty of structural biology. Curr. Opin. Struct. Biol. 22, 514-519.   DOI
5 Purdy J G, Flanagan J M, Ropson I J, Rennoll-Bankert K E, and Craven R C (2008) Critical role of conserved hydrophobic residues within the major homology region in mature retroviral capsid assembly. J. Virol 82, 5951-5961.   DOI
6 Raunser S and Walz T (2009) Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment. Annu. Rev. Biophys. 38, 89-105.   DOI
7 Nannenga B L, Shi D, Leslie A G W, and Gonen T (2014b) High-resolution structure determination by continuous-rotation data collection in MicroED. Nat. Methods 11, 927-930.   DOI
8 Bendersky L A and Gayle F W (2001) Electron diffraction using transmission electron microscopy. J. Res. Natl. Inst. Stand. Technol. 106, 997-1012.   DOI
9 Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N, and Bourne P E (2000) The protein data bank. Nucleic. Acids. Res. 28, 235-242.   DOI
10 Bill R M, Henderson P J, Iwata S, Kunji E R, Michel H, Neutze R, Newstead S, Poolman B, Tate C G, and Vogel H (2011) Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29, 335-340.   DOI
11 Henderson R, Baldwin J M, Ceska T A, Zemlin F, Beckmann E, and Downing K H (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213, 899-929.   DOI
12 Glaeser R M (1971) Limitations to significant information in biological electron microscopy as a result of radiation damage. J. Ultrastruct. Res. 36, 466-482.   DOI
13 Gonen T, Cheng Y, Sliz P, Hiroaki Y, Fujiyoshi Y, Harrison S C, and Walz T (2005) Lipid-protein interactions in double-layered two-dimensional AQP0 crystals. Nature 438, 633-638.   DOI
14 Henderson R (1975) The structure of the purple membrane from Halobacterium hallobium: analysis of the X-ray diffraction pattern. J. Mol. Biol. 93, 123-138.   DOI
15 Henderson R and Unwin P N (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28-32.   DOI
16 Kebbel F, Kurz M, Arheit M, Grutter M G, and Stahlberg H (2013) Structure and substrate-induced conformational changes of the secondary citrate/sodium symporter CitS revealed by electron crystallography. Structure 21, 1243-1250.   DOI
17 Kimura Y, Vassylyev D G, Miyazawa A, Kidera A, Matsushima M, Mitsuoka K, Murata K, Hirai T, and Fujiyoshi Y (1997) Surface of bacteriorhodopsin revealed by high-resolution electron crystallography. Nature 389, 206-211.   DOI
18 Kuhlbrandt W, Wang D N, and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature 367, 614-621.   DOI
19 Nannenga B L, Shi D, Hattne J, Reyes F E, and Gonen T (2014a) Structure of catalase determined by MicroED. Elife 3, e03600.
20 Boutet S, Lomb L, Williams G J, Barends T R, Aquila A, Doak R B, Weierstall U, DePonte D P, Steinbrener J, Shoeman R L, Messerschmidt M, Barty A, White T A, Kassemeyer S, Kirian R A, Seibert M M, Montanez P A, Kenney C, Herbst R, Hart P, Pines J, Haller G, Gruner S M, Philipp H T, Tate M W, Hromalik M, Koerner L J, van Bakel N, Morse J, Ghonsalves W, Arnlund D, Bogan M J, Caleman C, Fromme R, Hampton C Y, Hunter M S, Johansson L C, Katona G, Kupitz C, Liang M, Martin A V, Nass K, Redecke L, Stellato F, Timneanu N, Wang D, Zatsepin N A, Schafer D, Defever J, Neutze R, Fromme P, Spence J C, Chapman H N, and Schlichting I (2012) Highresolution protein structure determination by serial femtosecond crystallography. Science 337, 362-364.   DOI
21 de la Cruz M J, Hattne J, Shi D, Seidler P, Rodriguez J, Reyes F E, Sawaya M R, Cascio D, Weiss S C, Kim S K, Hinck C S, Hinck A P, Calero G, Eisenberg D, and Gonen T (2017) Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nat. Methods 14, 399-402.   DOI
22 Ellis M J and Hebert H (2001) Structure analysis of soluble proteins using electron crystallography. Micron 32, 541-550.   DOI
23 Ganser-Pornillos B K, Cheng A, and Yeager M (2007) Structure of fulllength HIV-1 CA: a model for the mature capsid lattice. Cell 131, 70-79.   DOI
24 Shi D, Nannenga B L, Iadanza M G, and Gonen T (2013) Threedimensional electron crystallography of protein microcrystals. Elife 2, e01345.
25 Gipson B, Zeng X, and Stahlberg H (2007) 2dx_merge: data management and merging for 2D crystal images. J. Struct. Biol. 160, 375-384.   DOI
26 Rodriguez J A, Ivanova M I, Sawaya M R, Cascio D, Reyes F E, Shi D, Sangwan S, Guenther E L, Johnson L M, Zhang M, Jiang L, Arbing M A, Nannenga B L, Hattne J, Whitelegge J, Brewster A S, Messerschmidt M, Boutet S, Sauter N K, Gonen T, and Eisenberg D S (2015) Structure of the toxic core of alpha-synuclein from invisible crystals. Nature 525, 486-490.   DOI
27 Ruprecht J J, Mielke T, Vogel R, Villa C, and Schertler G F (2004) Electron crystallography reveals the structure of metarhodopsin I. EMBO J. 23, 3609-3620.   DOI
28 Schenk A D, Castano-Diez D, Gipson B, Arheit M, Zeng X, and Stahlberg H (2010) 3D reconstruction from 2D crystal image and diffraction data. Methods. Enzymol. 482, 101-129.
29 Scherer S, Arheit M, Kowal J, Zeng X, and Stahlberg H (2014) Single particle 3D reconstruction for 2D crystal images of membrane proteins. J. Struct. Biol. 185, 267-277.   DOI
30 Wisedchaisri G and Gonen T (2011) Fragment-based phase extension for three-dimensional structure determination of membrane proteins by electron crystallography. Structure 19, 976-987.   DOI
31 Wisedchaisri G, Reichow S L, and Gonen T (2011) Advances in structural and functional analysis of membrane proteins by electron crystallography. Structure 19, 1381-1393.   DOI
32 Yonekura K, Kato K, Ogasawara M, Tomita M, and Toyoshima C (2015) Electron crystallography of ultrathin 3D protein crystals: atomic model with charges. Proc. Natl. Acad. Sci. U S A 112, 3368-3373.   DOI