Browse > Article
http://dx.doi.org/10.9729/AM.2017.47.3.126

Fractal Approach to Alternating Current Impedance Spectroscopy Studies of Carbon Nanotubes/Epoxy Polymer Composites  

Belhimria, Rajae (Laboratoire LASTID, Faculte des Sciences, Universite Ibn Tofail)
Boukheir, Sofia (Laboratoire LASTID, Faculte des Sciences, Universite Ibn Tofail)
Samir, Zineb (Laboratoire LASTID, Faculte des Sciences, Universite Ibn Tofail)
Len, Adel (Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences)
Achour, Mohammed Essaid (Laboratoire LASTID, Faculte des Sciences, Universite Ibn Tofail)
Eber, Nandor (Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences)
Costa, Luis Cadillon (I3N and Physics Department, University of Aveiro)
Oueriagli, Amane (Laboratoire LN2E, Faculte des Sciences, Universite Cadi Ayyad)
Publication Information
Applied Microscopy / v.47, no.3, 2017 , pp. 126-130 More about this Journal
Abstract
The dielectric relaxation characteristics of composites with different concentrations of carbon nanotubes loaded in an epoxy polymer matrix has been studied as a function of frequency over a wide range (1 Hz~10 MHz) at room temperature. Two characterization techniques were used in this work to measure and calculate the dimensionality parameters: small angle neutron scattering and impedance spectroscopy. The results obtained from both methods are in good agreement, indicating the reliability of the estimated fractal dimension, despite of the difference in the length scales accessed by the two techniques.
Keywords
Fractal dimension; Carbon nanotubes; Small angle neutron scattering; Impedance spectroscopy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sahoo N G, Rana S, Cho J W, Li L, and Chan S H (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837-867.   DOI
2 Salome L and Carmona F (1991) Fractal structure study of carbon-blacks used as conducting polymer fillers. Carbon N. Y. 29, 599-604.   DOI
3 Sapoval B, Gutfraind R, Meakin P, Keddam M, and Takenouti H (1933) Equivalent-circuit, scaling, random-walk simulation, and an experimental study of self-similar fractal electrodes and interfaces. Phys. Rev. E 4815, 3333-3344.
4 Tagmouti S, Bouzit S E, Costa L C, Graca M P F, and Outzourhit A (2015) Impedance spectroscopy of nanofluids based on multiwall carbon nanotubes. Spectrosc. Lett. 48, 761-766.   DOI
5 Tapaszto O, Lemmel H, Marko M, Balazsi M, Balazsi C, and Tapaszto L (2014) The influence of sintering on the dispersion of carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 614, 148-150.   DOI
6 Vivo B D, Lamberti P, Spinelli G, Tucci V, Guadagno L, and Raimondo M (2015) The effect of filler aspect ratio on the electromagnetic properties of carbon-nanofibers reinforced composites. J. Appl. Phys. 118, 064302.   DOI
7 Zhang J, Mine M, Zhu D, and Matsuo M (2009) Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon N. Y. 47, 1311-1320.   DOI
8 Ali E S B and Mousa M S (2016) Switch-on phenomena and field emission from multi-walled carbon nanotubes embedded in glass. Appl. Microsc. 46, 244-252.   DOI
9 Allaoui A, Bai S, Cheng H M, and Bai J B (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 62, 1993-1998.   DOI
10 Bonanos N, Steele B C H, and Butler E P (1987) Characterization of materials. In: Impedance Spectroscopy Emphasizing Solid Materials and Systems, ed. MacDonald R S, pp. 191-237, (Wiley, New York).
11 Boukheir S, Len A, Füzi J, Kenderesi V, Achour M E, Éber N, Costa L C, Oueriagli A, and Outzourhit A (2016) Structural characterization and electrical properties of carbon nanotubes/epoxy polymer composites. J. Appl. Polym. Sci. 134, 44514.
12 Bowen C R, Buschhorn S, and Adamaki V (2014) Manufacture and characterization of conductor-insulator composites based on carbon nanotubes and thermally reduced graphene oxide. Pure Appl. Chem. 86, 765.
13 Cooper C A, Cohen S R, Barber A H, and Wagner H D (2002) Detachment of nanotubes from a polymer matrix. Appl. Phys. Lett. 81, 3873-3875.   DOI
14 El-Tantawy F and Deghaidy F S (2000) Effect of iron oxide on vulcanization kinetics and electrical conductance of butyl rubber composites. Polym. Int. 49, 1371.   DOI
15 Glatter O and Kratky O (1982) Small-Angle X-ray Scattering (Academic Press, London).
16 Han Z and Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog. Polym. Sci. 36, 914-944.   DOI
17 Hattenhauer I, Tambosi P P, Duarte C A, Coelho L A F, Ramos A, and Pezzin S H (2015) Impact of electric field application during curing on epoxy-carbon nanotube nanocomposite electrical conductivity. J. Inorg. Organomet. Polym. Mater. 25, 627-634.   DOI
18 Hernandez Creus A, Bolzan Al, Carro P, Gonzalez S, Szdvarezza R C, and Arvia A J (1993) An ac impedance study of dendritic silver threedimensional electrodeposits. Electrochim. Acta 38, 1545.   DOI
19 Kang S, Hong S, Choe C R, Park M, Rim S, and Kim J (2001) Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process. Polymer 42, 879.   DOI
20 Hopkins A R, Tomczak S J, Vij V, and Jackson A J (2011) Small Angle Neutron Scattering (SANS) characterization of electrically conducting polyaniline nanofiber/polyimide nanocomposites. Thin Solid Films 520, 1617-1620.   DOI
21 Lau K, Shi S Q, and Cheng H (2002) Micro-mechanical properties and morphological observation on fracture surfaces of carbon nanotube composites pre-treated at different temperatures. Compos. Sci. Technol. 63, 1161-1164.
22 Le Mehaute A and Crepy G (1983) Introduction to transfer and motion in fractal media: the geometry of kinetics. Solid State Ion. 9-10, 17-30.   DOI
23 Lira-Olivares J, Marcano D, Lavelle C, and Sánchez F G (2000) Determination of porosity by dielectric permitivity measurements in porous ceramics. Rev. Latinoam. Metal. y Mater. 20, 68-79.
24 Pricke H (1953) The Maxwell-Wagner dispersion in a suspension of ellipsoids. J. Phys. Chem. 57, 934-937.   DOI
25 Mandelbrot B B, Passoja D E, and Paullay A J (1984) Fractal character of fracture surfaces of metals. Nature 308, 721-722.   DOI
26 Nyikos I and Pajkossy T (1985) Fractal dimension and fractional power frequency-dependent impedance of blocking electrodes. Electrochim. Acta 30, 1533-1540.   DOI
27 Park D M, Hong W H, Kim S G, and Kim H J (2000) Heat generation of filled rubber vulcanizates and its relationship with vulcanizate network structures. Eur. Polym. J. 36, 2429.   DOI
28 Raistrick I D (1987) The electrical analogs of physical and chemical processes. In: Impedance Spectroscopy Emphasizing Solid Materials and Systems, ed. MacDonald R S, pp. 27-83, (Wiley, New York).
29 Rammelt U and Reinhard G (1990) On the applicability of a constant phase element (CPE) to the estimation of roughness of solid metal electrodes. Electrochim. Acta 35, 1045-1049.   DOI
30 Risovic D, Poljacek S M, Furic K, and Gojo M (2008) Inferring fractal dimension of rough/porous surfaces: a comparison of SEM image analysis and electrochemical impedance spectroscopy methods. Appl. Surf. Sci. 255, 3063-3070.   DOI