Browse > Article
http://dx.doi.org/10.9729/AM.2016.46.1.1

Advanced Cryo-Electron Microscopy Technology: High Resolution Structure of Macromolecules  

Chung, Jeong Min (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Jung, Hyun Suk (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Publication Information
Applied Microscopy / v.46, no.1, 2016 , pp. 1-5 More about this Journal
Abstract
Recent cryo-electron microscopy (EM) studies reported the structure of various types of proteins at high resolution which is sufficient to visualize the intermolecular interaction at near atomic level. There are two main factors that cause the advances in cryo-EM; the development of image processing techniques, such as single particle analysis, and the improved electron detection devices. Although the atomic structures of small and asymmetric proteins are not yet to be determined by cryo-EM, this striking improvement implies the bright prospect of the application in biomedical studies. This study reviews the recently published studies reported high resolution structures using improved imaging analysis techniques and electron detectors. Furthermore, we will discuss about the future aspects of cryo-EM application.
Keywords
Cryo transmission electron microscopy; Single particle analysis; Electron detectors; Proten structure;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Li X, Mooney P, Zheng S, Booth C R, Braunfeld M B, Gubbens S, Agard D A, and Cheng Y (2013) Electron counting and beam-induced motion correction enable near-atomic-resolution single-particle cryo-EM. Nat. Methods 10, 584-590.   DOI
2 Liao M, Cao E, Julius D, and Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-112.   DOI
3 Lu P, Bai X C, Ma D, Xie T, Yan C, Sun L, Yang G, Zhao Y, Zhou R, Scheres S H W, and Shi Y (2014) Three-dimensional structure of human ${\gamma}$-secretase. Nature 512, 166-170.   DOI
4 McMullan G, Clark A, Turchetta R, and Faruqi A (2009) Enhanced imaging in low dose electron microscopy using electron counting. Ultramicroscopy 109, 1411-1416.   DOI
5 McMullan G, Faruqi A R, Clare D, and Henderson R (2014) Comparison of optimal performance at 300 keV of three direct electron detectors for use in low dose electron microscopy. Ultramicroscopy 147, 156-163.   DOI
6 Meng X, Zhao G, and Zhang P (2011) Structure of HIV-1 capsid assemblies by cryo-electron microscopy and iterative helical realspace reconstruction. J. Vis. Exp. 9, 3041.
7 Milazzo A C, Leblanc P, Duttweiler F, Jin L, Bouwer J C, Peltier S, Ellisman M, Bieser F, Matis H S, Wieman H, Denes P, Kleinfelder S, and Xuong N H (2005) Active pixel sensor array as a detector for electron microscopy. Ultramicroscopy 104, 152-159.   DOI
8 Penczek P, Radermacher M, and Frank J (1992) Three-dimensional reconstruction of single particle s embedded in ice. Ultramicroscopy 40, 33-53.   DOI
9 Radermacher M, Wagenknecht T, Verschoor A, and Frank J (1987) Three-dimensional structure of the large ribosomal subunit from Escherichia coli. EMBO J. 6, 1107-1114.
10 Ruskin R S, Yu Z, and Grigorieff N (2013) Quantitative characterization of electron detectors for transmission electron microscopy. J. Struct. Biol. 184, 385-393.   DOI
11 Spence J C H and Zuo J M (1988) Large dynamic range, parallel detection system for electron difrraction and imaging. Rev. Sci. Instrum. 59, 2102-2105.   DOI
12 Suloway C, Pulokas J, Fellmann D, Cheng A, Guerra F, Quispe J, Stagg S, Potter C S, and Carragher B (2005) Automated molecular microscopy: the new leginon system. J. Struct. Biol. 151, 41-60.   DOI
13 Thuman-Commike P A (2001) Single particle macromolecular structure determination via electron microscopy. FEBS Lett. 505, 199-205.   DOI
14 Van Heel M and Stoffl er-Meilicke M (1985) Characteristic views of E. Coli and B. Stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO J. 4, 2389-2395.
15 Verschoor A, Frank J, Radermacher M, Wagenknecht T, and Boublik M (1984) Three-dimensional reconstruction of the 30 S ribosomal subunit from randomly oriented particles. J. Mol. Biol. 178, 677-695.   DOI
16 Wong W, Bai X C, Brown A, Fernandez I S, Hanssen E, Condron M, Tan Y H, Baum J, and Scheres S H (2014) Cryo-EM structure of the Plasmodium falciparum 80S ribosome bound to the anti-protozoan drug emetine. Elife 3, e03080.
17 Zhao M, Wu S, Zhou Q, Vivona S, Cipriano D J, Cheng Y, and Brunger A T (2015) Mechanistic insights into the recycling machine of the SNARE complex. Nature 518, 61-67.   DOI
18 Bai X C, McMullan G, and Scheres S H (2015) How cryo-EM is revolutionizing structural biology. Trends Biochem. Sci. 40, 49-57.   DOI
19 Allegretti M, Mills D J, McMullan G, Kuhlbrandt W, and Vonck J (2014) Atomic model of the F420-reducing [NiFe] hydrogenase by electron cryo-microscopy using a direct electron detector. Elife 3, e01963.
20 Amunts A, Brown A, Bai X C, Llacer J L, Hussain T, Emsley P, Long F, Murshudov G, Scheres S H W, and Ramakrishnan V (2014) Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485-1489.   DOI
21 Campbell M G, Veesler D, Cheng A, Potter C S, and Carragher B (2015) 2.8 A resolution reconstruction of the Thermoplasma acidophilum 20S proteasome using cryo-electron microscopy. ELife 4, e06380.
22 Bartesaghi A, Matthies D, Banerjee S, Merk A, and Subramaniam S (2014) Structure of ${\beta}$-galactosidase at 3.2-A resolution obtained by cryoelectron microscopy. Proc. Natl. Acad. Sci. USA 111, 11709-11714.   DOI
23 Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X, Milne J L, and Subramaniam S (2015) Electron microscopy. 2.2 A resolution cryo-EM structure of ${\beta}$-galactosidase in complex with a cell-permeant inhibitor. Science 348, 1147-1151.   DOI
24 Booth C R, Jiang W, Baker M L, Zhou Z H, Ludtke S J, and Chiu W (2004) A 9 angstroms single particle reconstruction from CCD captured images on a 200 kV electron cryomicroscope. J. Struct. Biol. 147, 116-127.   DOI
25 Culling C F A (1974) Modern Microscopy: Elementary Theory and Practice (Butterworth and Company Ltd., London).
26 DeRosier D J and Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130-134.   DOI
27 Ellis M J and Herbert H (2001) Structure analysis of soluble proteins using electron crystallography. Micron 32, 541-550.   DOI
28 Evans J E, Jungjohann K L, Wong P C, Chiu P L, Dutrow G H, Arslan I, and Browning N D (2012) Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43, 1085-1090.   DOI
29 Frank J, Penczek P, Grassucci R, and Srivastava S (1991) Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA. J. Cell Biol. 115, 597-605.   DOI
30 Frank J, Verschoor A, and Boublik M (1981) Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214, 1353-1355.   DOI
31 Gabashvili I S, Agrawal R K, Spahn C M, Grassucci R A, Svergun D I, Frank J, and Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 A resolution. Cell 100, 537-549.   DOI
32 Grant T and Grigorieff N (2015) Measuring the optimal exposure for single particle cryo-EM using a 2.6 A reconstruction of rotavirus VP6. Elife 4, e06980.
33 Henderson R (1995) The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Q. Rev. Biophys. 28, 171-193.   DOI
34 Henderson R and Unwin P N (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257, 28-32.   DOI
35 Hussain T, Llacer J L, Fernandez I S, Munoz A, Martin-Marcos P, Savva C G, Lorsch J R, Hinnebusch A G, and Ramakrishnan V (2014) Structural changes enable start codon recognition by the eukaryotic translation initiation complex. Cell 159, 597-607.   DOI
36 Jiang J, Pentelute B L, Collier R J, and Zhou Z H (2015) Atomic structure of anthrax protective antigen pore elucidates toxin translocation. Nature 521, 545-549.   DOI
37 Kourkoutis L F, Plitzko J M, and Baumeister W (2012) Electron microscopy of biological materials at the nanometer scale. Annu. Rev. Mater. Res. 42, 33-58.   DOI
38 Krivanek O L and Mooney P E (1993) Applications of slow-scan CCD cameras in transmission electron microscopy. Ultramicroscopy 49, 95-108.   DOI