Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.4.125

Recent Advances in Electrochromic Sensors  

Seo, Minjee (Department of Chemistry Education, Korea National University of Education)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.4, 2022 , pp. 125-133 More about this Journal
Abstract
Along with the increasing need for point-of-care diagnostics, development of portable, user-friendly, as well as sensitive sensors have gained intensive attention. Among various strategies, electrochromic sensors, which are electrochemically operated colorimetric sensors, have been actively studied. With their ability to report the presence and concentration of analytes by optical signals, electrochromic sensors utilize the advantages of both electrochemical and colorimetric sensors, enabling the simplification of device composition as well as convenient interpretation of results. Up to date, electrochromic sensors have been applied for a wide range of analytes, and further developments such as the introduction of flexible platforms or self-powered systems have been reported, providing a path towards the development of wearable sensor devices. In this review, various types of electrochromic sensors, according to the main strategy in which the electrochemical signals are converted to colorimetric signals, are introduced.
Keywords
Electrochromism; Electrochromic Sensor; Electrochemical Sensor; Self-powered Sensor; Bipolar Electrode Sensor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. H. Kim and I. S. Shin, Point-of-care diagnostics for infectious diseases: Present and future, Korean J. Med., 93(2), 181-187 (2018).   DOI
2 L. Bouffier, D. Manojlovic, A. Kuhn, and N. Sojic, Advances in bipolar electrochemiluminescence for the detection of biorelevant molecular targets, Curr. Opin. Electrochem., 16, 28-34 (2019).   DOI
3 W. Xu, K. Fu, and P. W. Bohn, Electrochromic sensor for multiplex detection of metabolites enabled by closed bipolar electrode coupling, ACS Sens., 2(7), 1020-1026 (2017).   DOI
4 S. Y. Yeon, M. Seo, Y. Kim, H. Hong, and T. D. Chung, Paper-based electrochromic glucose sensor with polyaniline on indium tin oxide nanoparticle layer as the optical readout, Biosens. Bioelectron., 203, 114002 (2022).   DOI
5 D. D. Liana, B. Raguse, J. J. Gooding, and E. Chow, Toward paper-based sensors: Turning electrical signals into an optical readout system, ACS Appl. Mater. Interfaces, 7(34), 19201-19209 (2015).   DOI
6 J. R. Platt, Electrochromism, a possible change of color producible in dyes by an electric field, J. Chem. Phys., 34, 862-863 (1961).   DOI
7 Q. Zhai, X. Zhang, Y. Xia, J. Li, and E. Wang, Electrochromic sensing platform based on steric hindrance effects for CEA detection, Analyst, 141, 3985-3988 (2016).   DOI
8 J. Rho, S. Y. Yeon, and T. D. Chung, Sensitivity-tunable and disposable ion-sensing platform based on reverse electrodialysis, Anal. Chem., 92(13), 8776-8783 (2020).   DOI
9 X. Zhang, Y. Jing, Q. Zhai, Y. Yu, H. Xing, J. Li, and E. Wang, Point-of-care diagnoses: Flexible patterning technique for self-powered wearable sensors, Anal. Chem., 90(20), 11780-11784 (2018).   DOI
10 H. Liu and R. M. Crooks, Paper-based electrochemical sensing platform with integral battery and electrochromic read-out, Anal. Chem., 84(5), 2528-2532 (2012).   DOI
11 R. J. Mortimer, Electrochromic materials, Annu. Rev. Mater. Res., 41, 241-268 (2011).   DOI
12 V. Rai, R. S. Singh, D. J. Blackwood, and D. Zhili, A review on recent advances in electrochromic devices: A material approach, Adv. Eng. Mater., 22(8), 2000082 (2020).   DOI
13 G. G. Morbioli, T. Mazzu-Nascimento, A. M. Stockton, and E. Carrilho, Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (𝜇PADs) - A review, Anal. Chim. Acta, 970, 1-22 (2017).   DOI
14 W. J. Zhu, D. Q. Feng, M. Chen, Z. D. Chen, R. Zhu, H. L. Fang, and W. Wang, Bienzyme colorimetric detection of glucose with self-calibration based on tree-shaped paper strip, Sens. Actuators B Chem., 190, 414-418 (2014).   DOI
15 G. Cai, J. Wang, and P. S. Lee, Next-generation multifunctional electrochromic devices, Acc. Chem. Res., 49(8), 1469-1476 (2016).   DOI
16 P. Yang, P. Sun, and W. Mai, Electrochromic energy storage devices, Mater. Today, 19(7), 394-402 (2016).   DOI
17 P. R. Somani and S. Radhakrishnan, Electrochromic materials and devices: present and future, Mater. Chem. Phys., 77(1), 117-133 (2003).   DOI
18 M. A. Pellitero and F. J. del Campo, Electrochromic sensors: Innovative devices enabled by spectroelectrochemical methods, Curr. Opin. Electrochem., 15, 66-72 (2019).   DOI
19 R. Kumar, D. K. Pathak, and A. Chaudhary, Current status of some electrochromic materials and devices: A brief review, J. Phys. Appl. Phys., 54, 503002 (2021).   DOI
20 Z. Jin, Y. Su, and Y. Duan, An improved optical pH sensor based on polyaniline, Sens. Actuators B Chem., 71(1-2), 118-122 (2000).   DOI
21 S. Ranjbar, M. A. F. Nejad, C. Parolo, S. Shahrokhian, and A. Merkoci, Smart chip for visual detection of bacteria using the electrochromic properties of polyaniline, Anal. Chem., 91(23), 14960-14966 (2019).   DOI
22 Z. Yu, G. Cai, X. Liu, and D. Tang, Pressure-based biosensor integrated with a flexible pressure sensor and an electrochromic device for visual detection, Anal. Chem., 93(5), 2916-2925 (2021).   DOI
23 S. E. Fosdick, K. N. Knust, K. Scida, and R. M. Crooks, Bipolar electrochemistry, Angew. Chem. Int. Ed., 52(40), 10438-10456 (2013).   DOI
24 X. H. Xia, J.P. Tua, J. Zhang, X. L. Wang, W. K. Zhang, and H. Huang, Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition, Sol. Energy Mater. Sol. Cells, 92(6), 628-633 (2008).   DOI
25 S. M. b. Fakhruddin, K. Ino, K. Y. Inoue, Y. Nashimoto, and H. Shiku, Bipolar electrode-based electrochromic devices for analytical applications - a review, Electroanalysis, 34(2), 212-226 (2022).   DOI
26 X. Zhang, R. A. Lazenby, Y. Wu, and R. J. White, Electrochromic, closed-bipolar electrodes employing aptamer-based recognition for direct colorimetric sensing visualization, Anal. Chem., 91(17), 11467-11473 (2019).   DOI
27 X. Zhang, L. Zhang, Q. Zhai, W. Gu, J. Li, and E. Wang, Self-powered bipolar electrochromic electrode arrays for direct displaying applications, Anal. Chem., 88(5), 2543-2547 (2016).   DOI
28 L. M. N. Assis, R. Leones, J. Kanicki, A. Pawlicka, and M. M. Silva, Prussian blue for electrochromic devices, J. Electroanal. Chem., 777, 33-39 (2016).   DOI
29 E. Nagles, O. Garcia-Beltran, and J. A. Calderon, Evaluation of the usefulness of a novel electrochemical sensor in detecting uric acid and dopamine in the presence of ascorbic acid using a screen-printed carbon electrode modified with single walled carbon nanotubes and ionic liquids, Electrochim. Acta, 258, 512-523 (2017).   DOI
30 D. W. Hwang, S. Lee, M. Seo, and T. D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors - a review, Anal. Chim. Acta, 1033, 1-34 (2018)   DOI
31 K. Jackowska and P. Krysinski, New trends in the electrochemical sensing of dopamine, Anal. Bioanal. Chem., 405, 3753-3771 (2013).   DOI
32 S. Palanisamy, S. Ku, and S.-M. Chen, Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite, Microchim. Acta, 180, 1037-1042 (2013).   DOI
33 K. H. Han, I. S. Shin, and D. Y. Yoon, A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method, J. Korean Electrochem. Soc., 23(3), 66-72 (2020)
34 A. Zloczewska, A. Celebanskaa, K. Szot, D. Tomaszewskaa, M. Opalloa, and M. JonssonNiedziolkaa, Self-powered biosensor for ascorbic acid with a Prussian blue electrochromic display, Biosens. Bioelectron., 54, 455-461 (2014).   DOI
35 M. A. Pellitero, A. Guimera, M. Kitsara, R. Villa, A. Rubio, B. Lakard, M. Doche, J. Hihn, and F. J. del Campo, Quantitative self-powered electrochromic biosensors, Chem. Sci., 8, 1995-2002 (2017).   DOI
36 E. Avendano, L. Berggren, G. A. Niklasson, C. G. Granqvist, and A. Azens, Electrochromic materials and devices: Brief survey and new data on optical absorption in tungsten oxide and nickel oxide films, Thin Solid Films, 496(1), 30-36 (2006).   DOI
37 S. Bogati, R. Basnet, and A. Georg, Iridium oxide catalyst for hybrid electrochromic device based on tetramethylthiourea (TMTU) redox electrolyte, Sol. Energy Mater. Sol. Cells, 189, 206-213 (2019).   DOI
38 I. Mjejri, A. Rougier, and M. Gaudon, Low-cost and facile synthesis of the vanadium oxides V2O3, VO2, and V2O5 and their magnetic, thermochromic and electrochromic properties, Inorg. Chem., 56(3), 1734-1741 (2017).   DOI
39 K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, and K.-C. Ho, Viologen-based electrochromic materials and devices, J. Mater. Chem. C, 7, 4622-4637 (2019).   DOI
40 M. K. Ram, E. Maccioni, and C. Nicolini, The electrochromic response of polyaniline and its copolymeric systems, Thin Solid Films, 303(1-2), 27-33 (1997).   DOI
41 P. Camurlu, Polypyrrole derivatives for electrochromic applications, RSC Adv., 4, 55832-55845 (2014).   DOI
42 R. J. Mortimer, Electrochromic materials, Chem. Soc. Rev., 26, 147-156 (1997)   DOI
43 S. Santiago-Malagon, D. Rio-Colin, H. Azizkhani, M. Aller-Pellitero, G. Guirado, and F. J. D. Campo, A selfpowered skin-patch electrochromic biosensor, Biosens. Bioelectron., 175, 112879 (2021).   DOI
44 K. Yamada, H. Shibata, K. Suzuki, and D. Citterio, Toward practical application of paper-based microfluidics for medical diagnostics: state-of-the-art and challenges, Lab. Chip, 17, 1206-1249 (2017).   DOI
45 C. G. Granqvist, Electrochromics for smart windows: Oxide-based thin films and devices, Thin Solid Films, 564, 1-38 (2014).   DOI
46 M. A. F. Nejad, S. Ranjbar, C. Parolo, E. P. Nguyen, R. ALvarez-Diduk, M. R. Hormozi-Nezhad, and A. Merkoci, Electrochromism: An emerging and promising approach in (bio)sensing technology, Mater. Today, 50, 476-498 (2021).   DOI
47 Y. Lu, S. H. Lam, W. Lu, L. Shao, T. H. Chow, and J. Wang, All-state switching of the Mie resonance of conductive polyaniline nanospheres, Nano Lett., 22, 1406-1414 (2022).   DOI
48 D. Capoferri, R. Alvarez-Diduk, M. Del Carlo, D. Compagnone, and A. Merkoci, Electrochromic molecular imprinting sensor for visual and smartphone-based detections, Anal. Chem., 90(9), 5850-5856 (2018).   DOI
49 S. K. Vashist, P. B. Luppa, L. Y. Yeo, A. Ozcan, and J. H. T. Luong, Emerging technologies for next-generation point-of-care testing, Trends Biotechnol., 33, 692-705 (2015).   DOI
50 C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, and S. Yao, Recent advances in electrochemical glucose biosensors: a review, RSC Adv., 3, 4473-4491 (2013).   DOI
51 Z. H. Sheng, X. Q. Zheng, J. Y. Xu, W. J. Bao, F. B. Wang, and X. H. Xia, Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid, Biosens. Bioelectron., 34(1), 125-131 (2012)   DOI
52 X. Chen, G. Wu, Z. Cai, M. Oyama, and X. Chen, Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid, Microchim. Acta, 181, 689-705 (2014).   DOI