Browse > Article
http://dx.doi.org/10.5229/JKES.2008.11.4.304

Electrochemical properties of gel copolymer- electrolyte based on Phosphonium ionic liquid  

Cha, E.H. (Dept. of Liberal Art and Science, Hoseo University)
Lim, S.A. (School of AIBN, Queensland Univ.)
Park, J.H. (Dept. of Chemistry, Korea Univ.)
Kim, D.W. (Dept. of Chemical Engineering, HanYang Univ.)
Park, J.H. (Dept. of natural Science, Hoseo University)
Publication Information
Journal of the Korean Electrochemical Society / v.11, no.4, 2008 , pp. 304-308 More about this Journal
Abstract
Noble Poly (lithium 2-acrylamido-2-methyl propane sulfonate) and its copolymer with N-vinyl formamide based on trihexyl (tetradecyl) phosphonium acetate [$(C_6H_{13})_3$ P ($C_{14}H_{29}$) $CH_3COO$; $P_{66614}$ $CH_3COO$] and trihexyl (tetradecyl)phosphonium bis(trifluoromethane sulfonyl) amide ([$(C_6H_{13})_3P(C_{14}H_{29})$] [TFSA];$P_{66614}TFSA$) were prepared and analyzed to determine their characteristics and properties. The ionic conductivity of a copolymer based $P_{66614}TFSA$ ionic liquid system exhibits a higher conductivity ($8.9{\times}10^{-5}Scm^{-1}$) than that of a copolymer based $P_{66614}CH_3COO$ system ($1.57{\times}10^{-5}Scm^{-1})$. The charge on the TFSA anion is spread very diffusely through the S-N-S core and particularly in the trifluoromethane groups, and this diffusion results in a decreased interaction between the cation and the anion. The viscosity of $P_{66614}TFSA$ (39 cP at 343 K) and $P_{66614}CH_3COO$ (124 cP at 343 K), which is very hydrophobic, was fairly high. High viscosity leads to a slow rate of diffusion of redox species. The ionic conductivity of copolymer of a phosphonium ionic liquid system also exhibits higher conductivity than that of a homopolymer system. Phosphonium ionic liquids were thermally stable at temperatures up to $400^{\circ}C$.
Keywords
phosphonium bis sulfonyl) amide; Trihexyl(tetradecyl) phosphonium acetate; Ionic conductivity; Viscosity; Thermally stable;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. Y. Bruce 'Organic Chemistry', Prence Hall, 1995
2 Wataru Ogihara, Satiko Washiro, Hiromitsu nakajima, and Hiroyuki Ohno, 'Effect of Cation Sturucture on the Electrochemical and Thermal Properties of ioN Conductive Polymers Obtained From Polymerizable Ionic Liquids' Electro Chimica Acta 51, 2614 (2006)   DOI   ScienceOn
3 Hiroyuki Ohno, Masahiro Yoshizawa, and Wataru Ogihara, 'Development of New Class of Ion Conductive Polymers Based on Ionic Liquid' ElectroChimica Acta 50, 255 (2004)   DOI   ScienceOn
4 H. Matsumoto, H. Sakaebe, K. Tatsumi, and J. Power Sourses, 146, 45 (2005)   DOI   ScienceOn
5 R. E. Ramirez and E. M.Sanchez, 'Molten Phosphonium Iodides as Electrolytes in Dye-sensitized Nanocrystalline Solar Cells' Energy Mater.Sol.Cells. 90, 2384 (2006)   DOI   ScienceOn
6 R. E. Ramirez, L. C. Torres Gonzalez, and E. M. Sanchez, 'Electrochemical Aspects of Asymmetric Phosphonium Ionic Liquids' J. ElectroChem. Soc, 154. B 229 (2007)   DOI   ScienceOn
7 Qing Dai, David B.Menzies, D. R. Macfarlane, Stuart R, Batten, Stewart Forsyth, Leone Spiccia, Yi-Bing Cheng, and Maria Forsyth, 'Dye Sensitized Nanocrystalline Solar Cells Incorporating Ethylmethylimidazolium-based Ionic Liquid Electrolytes' C.R.Chimie 9, 617 (2006)   DOI   ScienceOn
8 Jeniffer M. Pringle, Jake Golding, Krisztian Baranyai, Craig M. Forsyth, Glen B. Deacon, Janet L. Scott, and Douglas R. Macfarlane 'The Effect of Anion Fluorination in Inonic Liquids-physical Properties of a Range of bis (methanesulfonyl) Amide Salts New Journal of Chemistry, 127, 1504 (2003)
9 Katsuhiko Tsunashima, Masashi Suiya, 'Physical and Electrochemical Properties of Low-viscosity Phosphonium Ionic Liquids as Potential Elecrolytes.' Electrochemistry Communications 9, 233 (2007)   DOI   ScienceOn
10 James Vauhan, Jack Tu, and David Dreisinger, 'Ionic Liquid Electro-Deposition of Reactive metals' J. Minerals, Metals & Materials Society'
11 Thomas E. Sutto, Hugh C. De long, and Paul C. Trulove 'Physical Properties of Substituted Imidazolium Based Ionic Liquids Gel Electrolyte' Z.Naturforch.57a, 839 (2002)
12 R. T. Carlin, J. Fuller, W. K.Kuhn, M. J. Lysaght, and P. C. Trulove, 'Elctrochemistry of Room-temperature Chloroaluminate Molten Salts at Graphitic and Nongraphitic Electrodes' J.Appl. Electrochem. 26, 1147 (1996)
13 J. Sun, M. Forsyth, D. R. Macfarlane, 'Room- temperature Molten Salts Based on Quarternary Ammonium ion' J.Phys.chem.b, 102, 8858 (1998)   DOI   ScienceOn
14 J. Sun, D. R. Macfarlane, and M. Forsyth, 'Lithium Polyelectrolyte-ionic Liquid Systems' Solid state ionics 147, 333 (2002)   DOI   ScienceOn
15 C. Bradaric et.al., in Ionic Liquids, as Green Solvents Progress and Prospects, R.Rogers and K.Seddon, Editors, p.41 American Chemical Society (2003)
16 D. R. Macfarlane, P. Meakin, J. Sun, N. Amini, and M. Forsyth. 'Ionic Liquids Based on Imidazolium, Ammonium and Pyrrolidinium Salts of the dIcynamide Anion' Phys.chem.b, 103, 4164 (1999)   DOI   ScienceOn
17 N. Ito, S. Arzhanysev, M. Heitz, and M. Maroncelli 'Solvation Dynamics and Rotation of Coumarin 153 in Alkylphosphonium Ionic Liquids' J.Phys.Chem.B108, 5771 (2004)   DOI   ScienceOn
18 J. Sun, D. R. Macfarlane, and M. Forsyth, 'Lithium Polyelectrolyte-ionic Liquid Systems' solid state Ionics 147, 333(2002)   DOI   ScienceOn
19 E. H. Cha, S. A. Lim, J. H. Parkc, D. W. Kim , and D. R. Macfarlane, 'Ionic Conductivity Studies of Gel Polyelectrolyte Based on Ionic Liquid' J. Power Sources, 178, 779 (2008)   DOI   ScienceOn