Browse > Article
http://dx.doi.org/10.5229/JKES.2006.9.3.113

Electrochemical Behaviors of ABTS2- on the Thiol-modified Gold Electrodes  

Kim, Hyug-Han (Department of Chemistry, Dankook University)
Publication Information
Journal of the Korean Electrochemical Society / v.9, no.3, 2006 , pp. 113-117 More about this Journal
Abstract
The electrochemical properties of the redox mediator, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) ($ABTS^{2-}$) were studied using cyclic voltammetry. The measured potentials (${E^o} vs SCE) of the two redox couples of ABTS are 0.45 V for $ABTS^{2-}/ABTS^{\cdot-}$ and 0.87 V for $ABTS^{\cdot-}/ABTS^0$. The rate constant for heterogeneous electron transfer and the diffusion coefficients for $ABTS^{2-}$ are $5x10^{-3}cm\;s^{-1}$ and $3.1x10^{-6}cm^2\;s^{-1}$, respectively. Our interest in $ABTS^{2-}$ stems from the fact that this molecule functions as a substrate to the copper oxidase, laccase, by providing the reducing equivalents necessary for the biocatalyzed reduction of dioxygen to water. Consequently, when laccase is tethered to an electrode surface or dissolved in solution, $ABTS^{2-}$ can be used to quantify enzyme activity electrochemically.
Keywords
Laccase; ABTS; Redox mediator; Dioxygen; Cyclic voltammetry;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. S. Nicholson and L. Shain, Anal. Chem., 36, 706 (1964)   DOI
2 L.-E. Andreisson. R. Branden. and B. Reinhanunar. Biochim. Biophys. Acta, 438 (1976)
3 M. R. Tarasevich, A. I. Yaropolov, V. A. Bogdanovskaya, and S. D. Varfolomeev, J. Electroanal. Chem., 104, 393 (1979)   DOI   ScienceOn
4 L. Venkatasubramanian and P. Maruthamuthu, Int. J. Chem. Kinetics, 21, 399 (1989)   DOI
5 R. E. Childs and W. G Bardsley, J. Biochem., 145, 93 (1975)   DOI
6 P. A. Adams, J. Chem. Soc. Perkin Trans., 2, 1407 (1990)
7 P. Maruthamuthu, D. K. Sharma, and N. Serpone, J. Phys. Chem., 99, 3636 (1995)   DOI   ScienceOn
8 R. Bourbonnais and M. G. Paice, Appl. Microbiol. Biotechnol., 36, 823 (1992)
9 V. A. Bogdanovskaya, E. F. Gavrilova, and M. R. Tarasevich, Elektrokhirniya, 22, 742 (1986)
10 C.-W. Lee, H. B. Gray, F. C. Anson, and B. G. Malmstrom, J. Electroanal. Chem., 172, 289 (1984)   DOI   ScienceOn
11 J. Ohkawa, N. Okada, A. Shinmyo, and M. Takano, Proc. Natl. Acad Sci., 86, 1239 (1989)   DOI   ScienceOn
12 G. T. R. Palmore and H.-H. Kim, J. Electroanal. Chem., 464, 110 (1999)   DOI   ScienceOn
13 E. Steckhan and T. Kuwana, Ber. Bunsen., 78, 253 (1974)
14 A. J. Bard and L. R. Faulkner, 'Electrochemical Methods', John Wiley & Sons, New York (2000)
15 R. S. Nicholson, Anal. Chem., 37, 1351 (1965)   DOI
16 J. Heinze, Ber. Bunsenges. Phys. Chem., 85, 1096 (1981)   DOI   ScienceOn
17 C. R. Cantor and P. R. Schimmel, 'Biophysical Chemistry', Freeman, New York, (1980)
18 R. R. Malkin and B. G. Malmstrom, Adv. Enzymol., 33, 177 (1970)
19 A. Naqui and S. D. Varfolomeev, FEBS Lett., 113, 157 (1980)   DOI   ScienceOn
20 F. Xu, J. Biol. Chem., 272, 921 (1997)
21 G. B. Koudelka and M. J. Ettinger, J. Biol. Chem. 263, 3698 (1988)
22 A. Dalmia, R. F. Savinell, and C. C. Liu, J. Electro. Chem. Soc., 143, 1827 (1996)   DOI   ScienceOn
23 D. Leech and F. Daigle, Analyst, 123, 1971 (1998)   DOI   ScienceOn
24 F. Trudeau, F. Daigle, and D. Leech, Anal. Chem., 69, 882 (1997)   DOI   ScienceOn