PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries |
Shin, Sohyeon
(Department of Energy Systems Engineering, Soon Chun Hyang University)
Kim, Sunghoon (Department of Energy Systems Engineering, Soon Chun Hyang University) Cho, Younghyun (Department of Energy Systems Engineering, Soon Chun Hyang University) Ahn, Wook (Department of Energy Systems Engineering, Soon Chun Hyang University) |
1 | C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui, J. Li, S. Dong, X. Zhou, and G. Cui, Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery, Adv. Sci., 6(22), 1901036 (2019). DOI |
2 | F. A. G. Daza, M. R. Bonilla, A. Llordes, J. Carrasco, and E. Akhmatskaya, Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes, ACS Appl.Mater. Interfaces, 11, 753 (2018). |
3 | K. Heo, J. Im, J.-S. Lee, J. Jo, S. Kim, J. Kim, and J. Lim, High-rate blended cathode with mixed morphology for all-solid-state Li-ion batteries, J. Electrochem. Sci. Technol., 11, 282 (2020). DOI |
4 | B.-H. Choi, H. T. Jun, E. J. Yi and H. Hwang, Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y glass electrolytes, J. Korean Electrochem. Soc., 24, 52 (2021). |
5 | X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, and H.-W. Lee, Solid-state lithium-sulfur batteries operated at 37℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer, Nano Lett., 17(5), 2967 (2017). DOI |
6 | J. Kim, J. Oh, J. Y. Kim, Y.-G. Lee, and K. M. Kim, Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries, J. Korean Electrochem. Soc., 22(3), 87 (2019). |
7 | L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets, Chem. Mater., 27(11), 4040 (2015). DOI |
8 | L. Zhu, J. Li, Y. Jia, P. Zhu, M. Jing, S. Yao, X. Shen, S. Li, and F. Tu, Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte, Int. J. Energy Res., 44(13), 10168 (2020). DOI |
9 | L. Zhu, P. Zhu, S. Yao, X. Shen, and F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery, Int. J. Energy Res., 43(9), 4854 (2019). DOI |
10 | D. O. Shin, K. Oh, K. M. Kim, K.-Y. Park, B. Lee, Y.-G. Lee, and K. Kang, Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction, Sci. Rep., 5, 18053 (2015). DOI |
11 | M. J. Lee, J. Y. Kim, J. Oh, J. M. Kim, K. M. Kim, Y.-G. Lee, and D. O. Shin, Study on electrochemical performances of PEO-based composite electrolyte by contents of oxide solid electrolyte, J. Korean Electrochem. Soc., 21(4), 80 (2018). |
12 | V. T. Luu, Q. H. Nguyen, M. G. Park, H. L. Nguyen, M.-H. Seo, S.-K. Jeong, N. Cho, Y.-W. Lee, Y. Cho, S. N. Lim, Y.-S. Jun, and W. Ahn, Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery, J. Mater. Res. Technol., 15, 5849 (2021). DOI |
13 | C.-L. Tsai, Q. Ma, C. Dellen, S. Lobe, F. Vondahlen, A. Windmuller, D. Gruner, H. Zheng, S. Uhlenbruck, and M. Finsterbusch, A garnet structure-based all-solid-state Li battery without interface modification: Resolving incompatibility issues on positive electrodes, Sustain. Energy Fuels, 3, 280 (2019). DOI |
14 | Q. H. Nguyen, V. T. Luu, H. L. Nguyen, Y.-W. Lee, Y. Cho, S. Y. Kim, Y.-S. Jun, and W. Ahn, Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries, Front. Chem., 8, 619832 (2021). DOI |
15 | K.-C. Kim and S.-W. Ryu, Synthesis of self-doped poly(PEGMA-co-BF3LiMA) electrolytes and effect of PEGMA molecular weight on ionic conductivities, J. Korean Electrochem. Soc., 15(4), 230 (2012). DOI |
16 | K. Rhodes, R. Meisner, Y. Kim, N. Dudney, and C. Daniel, Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD, J. Electrochem. Soc., 158, A890 (2011). DOI |
17 | S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, and Q. H. Yang, Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries, Adv. Sci., 7, 1903088 (2020). DOI |
18 | J. S. Han, H. Yu, and J.-K. Kim, Electrochemical performance of rechargeable lithium battery using hybrid solid electrolyte, J. Korean Electrochem. Soc., 24(4), 100 (2021). |
19 | Z. Xue, D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19218 (2015). DOI |
20 | V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43, 4714 (2014). DOI |
21 | W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, and M. Armand, Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes, J. Phys.: Condens. Matter, 7, 6823 (1995). DOI |
22 | P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, and X. Liu, Review on polymer-based composite electrolytes for lithium batteries, Front. Chem., 7, 522 (2019). DOI |
23 | J. Lee, K. Heo, Y.-W. Song, D. Hwang, M.-Y. Kim, H. Jeong, D.-C. Shin, and J. Lim, Degradation of all-solid-state lithium-sulfur batteries with PEO-based composite electrolyte, J. Electrochem. Sci. Technol., 13(2), 199 (2022). DOI |