Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.3.105

PEO/PPC based Composite Solid Electrolyte for Room Temperature Operable All Solid-State Batteries  

Shin, Sohyeon (Department of Energy Systems Engineering, Soon Chun Hyang University)
Kim, Sunghoon (Department of Energy Systems Engineering, Soon Chun Hyang University)
Cho, Younghyun (Department of Energy Systems Engineering, Soon Chun Hyang University)
Ahn, Wook (Department of Energy Systems Engineering, Soon Chun Hyang University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.3, 2022 , pp. 105-112 More about this Journal
Abstract
For the commercialization of all-solid-state batteries, it is essential to develop a solid electrolyte that can be operable at room temperature, and it is necessary to manufacture all-solid-state batteries by adopting materials with high ionic conductivity. Therefore, in order to increase the ionic conductivity of the existing oxide-based solid, Li7La3Zr2O12 (LLZO) doped with heterogeneous elements was used as a filler material (Al and Nb-LLZO). An electrolyte with garnet-type inorganic filler doped was prepared. The binary metal element and the polymer mixture of poly(ethylene oxide)/poly(propylene carbonate) (PEO/PPC) (1:1) are uniformly manufactured at a ratio of 1:2.4, The electrochemical performance was tested at room temperature and 60 ℃ to verify room temperature operability of the all-solid-state battery. The prepared composite electrolyte shows improved ionic conductivity derived from co-doping of the binary elements, and the PPC helps to improve the ionic conductivity, thereby increasing the capacity of all-solid-state batteries at room temperature as well as 60 ℃. It was confirmed that the capacity retention rate was improved.
Keywords
Garnet-Type Inorganic Electrolyte; Polyethylene Oxide; Polypropylene Carbonate; Composite Electrolyte; All Solid-State Batteries;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 C. Wang, T. Wang, L. Wang, Z. Hu, Z. Cui, J. Li, S. Dong, X. Zhou, and G. Cui, Differentiated lithium salt design for multilayered PEO electrolyte enables a high-voltage solid-state lithium metal battery, Adv. Sci., 6(22), 1901036 (2019).   DOI
2 F. A. G. Daza, M. R. Bonilla, A. Llordes, J. Carrasco, and E. Akhmatskaya, Atomistic insight into ion transport and conductivity in Ga/Al-substituted Li7La3Zr2O12 solid electrolytes, ACS Appl.Mater. Interfaces, 11, 753 (2018).
3 K. Heo, J. Im, J.-S. Lee, J. Jo, S. Kim, J. Kim, and J. Lim, High-rate blended cathode with mixed morphology for all-solid-state Li-ion batteries, J. Electrochem. Sci. Technol., 11, 282 (2020).   DOI
4 B.-H. Choi, H. T. Jun, E. J. Yi and H. Hwang, Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y glass electrolytes, J. Korean Electrochem. Soc., 24, 52 (2021).
5 X. Tao, Y. Liu, W. Liu, G. Zhou, J. Zhao, D. Lin, C. Zu, O. Sheng, W. Zhang, and H.-W. Lee, Solid-state lithium-sulfur batteries operated at 37℃ with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer, Nano Lett., 17(5), 2967 (2017).   DOI
6 J. Kim, J. Oh, J. Y. Kim, Y.-G. Lee, and K. M. Kim, Recent progress and perspectives of solid electrolytes for lithium rechargeable batteries, J. Korean Electrochem. Soc., 22(3), 87 (2019).
7 L. J. Miara, W. D. Richards, Y. E. Wang, and G. Ceder, First-principles studies on cation dopants and electrolyte|cathode interphases for lithium garnets, Chem. Mater., 27(11), 4040 (2015).   DOI
8 L. Zhu, J. Li, Y. Jia, P. Zhu, M. Jing, S. Yao, X. Shen, S. Li, and F. Tu, Toward high performance solid-state lithium-ion battery with a promising PEO/PPC blend solid polymer electrolyte, Int. J. Energy Res., 44(13), 10168 (2020).   DOI
9 L. Zhu, P. Zhu, S. Yao, X. Shen, and F. Tu, High-performance solid PEO/PPC/LLTO-nanowires polymer composite electrolyte for solid-state lithium battery, Int. J. Energy Res., 43(9), 4854 (2019).   DOI
10 D. O. Shin, K. Oh, K. M. Kim, K.-Y. Park, B. Lee, Y.-G. Lee, and K. Kang, Synergistic multi-doping effects on the Li7La3Zr2O12 solid electrolyte for fast lithium ion conduction, Sci. Rep., 5, 18053 (2015).   DOI
11 M. J. Lee, J. Y. Kim, J. Oh, J. M. Kim, K. M. Kim, Y.-G. Lee, and D. O. Shin, Study on electrochemical performances of PEO-based composite electrolyte by contents of oxide solid electrolyte, J. Korean Electrochem. Soc., 21(4), 80 (2018).
12 V. T. Luu, Q. H. Nguyen, M. G. Park, H. L. Nguyen, M.-H. Seo, S.-K. Jeong, N. Cho, Y.-W. Lee, Y. Cho, S. N. Lim, Y.-S. Jun, and W. Ahn, Cubic garnet solid polymer electrolyte for room temperature operable all-solid-state-battery, J. Mater. Res. Technol., 15, 5849 (2021).   DOI
13 C.-L. Tsai, Q. Ma, C. Dellen, S. Lobe, F. Vondahlen, A. Windmuller, D. Gruner, H. Zheng, S. Uhlenbruck, and M. Finsterbusch, A garnet structure-based all-solid-state Li battery without interface modification: Resolving incompatibility issues on positive electrodes, Sustain. Energy Fuels, 3, 280 (2019).   DOI
14 Q. H. Nguyen, V. T. Luu, H. L. Nguyen, Y.-W. Lee, Y. Cho, S. Y. Kim, Y.-S. Jun, and W. Ahn, Li7La3Zr2O12 garnet solid polymer electrolyte for highly stable all-solid-state batteries, Front. Chem., 8, 619832 (2021).   DOI
15 K.-C. Kim and S.-W. Ryu, Synthesis of self-doped poly(PEGMA-co-BF3LiMA) electrolytes and effect of PEGMA molecular weight on ionic conductivities, J. Korean Electrochem. Soc., 15(4), 230 (2012).   DOI
16 K. Rhodes, R. Meisner, Y. Kim, N. Dudney, and C. Daniel, Evolution of phase transformation behavior in Li(Mn1.5Ni0.5)O4 cathodes studied by in situ XRD, J. Electrochem. Soc., 158, A890 (2011).   DOI
17 S. Li, S. Q. Zhang, L. Shen, Q. Liu, J. B. Ma, W. Lv, Y. B. He, and Q. H. Yang, Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries, Adv. Sci., 7, 1903088 (2020).   DOI
18 J. S. Han, H. Yu, and J.-K. Kim, Electrochemical performance of rechargeable lithium battery using hybrid solid electrolyte, J. Korean Electrochem. Soc., 24(4), 100 (2021).
19 Z. Xue, D. He, and X. Xie, Poly (ethylene oxide)-based electrolytes for lithium-ion batteries, J. Mater. Chem. A, 3, 19218 (2015).   DOI
20 V. Thangadurai, S. Narayanan, and D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chem. Soc. Rev., 43, 4714 (2014).   DOI
21 W. Gorecki, M. Jeannin, E. Belorizky, C. Roux, and M. Armand, Physical properties of solid polymer electrolyte PEO (LiTFSI) complexes, J. Phys.: Condens. Matter, 7, 6823 (1995).   DOI
22 P. Yao, H. Yu, Z. Ding, Y. Liu, J. Lu, M. Lavorgna, J. Wu, and X. Liu, Review on polymer-based composite electrolytes for lithium batteries, Front. Chem., 7, 522 (2019).   DOI
23 J. Lee, K. Heo, Y.-W. Song, D. Hwang, M.-Y. Kim, H. Jeong, D.-C. Shin, and J. Lim, Degradation of all-solid-state lithium-sulfur batteries with PEO-based composite electrolyte, J. Electrochem. Sci. Technol., 13(2), 199 (2022).   DOI