Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.2.88

Electrochemical Method for Measurement of Hydroxide Ion Conductivity and CO2 Poisoning Behavior of Anion Exchange Membrane  

Kim, Suyeon (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Kwon, Hugeun (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Jung, Namgee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Shin, Dongwon (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.2, 2022 , pp. 88-94 More about this Journal
Abstract
The anion exchange membrane used in alkaline membrane fuel cells transports hydroxide ions, and ion conductivity affects fuel cell performance. Thus, the measurement of absolute hydroxide ion conductivity is essential. However, it is challenging to accurately measure hydroxide ion conductivity since hydroxide ions are easily poisoned in the form of bicarbonate by carbon dioxide in the atmosphere. In this study, we applied electrochemical ion exchange treatment to measure the absolute hydroxide ion conductivity of the anion exchange membrane. In addition, we investigated the effect of carbon dioxide poisoning of hydroxide ions on electrochemical performance by measuring bicarbonate conductivity. Commercial anion exchange membranes (FAA-3-50 and Orion TM1) and polyphenylene-based block copolymer (QPP-6F) were used.
Keywords
Alkaline Membrane Fuel Cell; Ion Exchange Membrane; Hydroxide Ion Conductivity; $CO_2$ Poisoning;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Z. Siroma, S. Watanabe, K. Yasuda, K. Fukuta, and H. Yanagi, Mathematical modeling of the concentration profile of carbonate ions in an anion exchange membrane fuel cell, J. Electrochem. Soc., 158(6), B682-B689 (2011).
2 H. S. Yoon, W. S. Jung, and M. H. Choe, Recent advances in studies of the activity of non-precious metal catalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells, J. Korean Electrochem. Soc., 23(4), 90-96 (2020).   DOI
3 P. Atkins and J. d. Paula, Physical Chemistry, 8th ed., pp. 765, Oxford University Press, UK (2006).
4 H. Kim, B. Koo, and H. Lee, Comparison of arrhenius and VTF description of ion transport mechanism in the electrolytes, J. Korean Electrochem. Soc., 23(4), 81-89 (2020).   DOI
5 C. G. Arges, V. K. Ramani, and P. N. Pintauro, The chalkboard: Anion exchange membrane fuel cells, Electrochem. Soc. Interface, 19(2), 31-35 (2010).   DOI
6 Y. K. Choe, C. Fujimoto, K. S. Lee, L. T. Dalton, K. Ayers, N. J. Henson, and Y. S. Kim, Alkaline stability of benzyl trimethyl ammonium functionalized polyaromatics: a computational and experimental study, Chem. Mater., 26(19), 5675-5682 (2014).   DOI
7 H. Yanagi, and K. Fukuta, Anion exchange membrane and ionomer for alkaline membrane fuel cells (AMFCs), ECS trans., 16(2), 257-262 (2008).   DOI
8 W. H. Lee, E. J. Park, J. Han, D. W. Shin, Y. S. Kim, and C. Bae, Poly (terphenylene) anion exchange membranes: the effect of backbone structure on morphology and membrane property, ACS Macro Lett., 6(5), 566-570 (2017).   DOI
9 M. R. Hibbs, M. A. Hickner, T. M. Alam, S. K. McIntyre, C. H. Fujimoto, and C. J. Cornelius, Transport properties of hydroxide and proton conducting membranes, Chem. Mater., 20(7), 2566-2573 (2008).   DOI
10 A. G. Wright, J. Fan, B. Britton, T. Weissbach, H.-F. Lee, E. A. Kitching, T. J. Peckhama, and S. Holdcroft, Hexamethyl-p-terphenyl poly (benzimidazolium): a universal hydroxide-conducting polymer for energy conversion devices, Energy Environ. Sci., 9(6), 2130-2142 (2016).   DOI
11 N. Ziv, A. N. Mondal, T. Weissbach, S. Holdcroft, and D. R. Dekel, Effect of CO2 on the properties of anion exchange membranes for fuel cell applications, J. Membr. Sci., 586, 140-150 (2019).   DOI
12 Li, N., Wang, L., and Hickner, M., Cross-linked comb-shaped anion exchange membranes with high base stability, Chem. Commun., 50(31), 4092-4095 (2014).   DOI
13 N. Yokota, M. Shimada, H. Ono, R. Akiyama, E. Nishino, K. Asazawa, J. Miyake, M. Watanabe, and K. Miyatake, Aromatic copolymers containing ammonium-functionalized oligophenylene moieties as highly anion conductive membranes, Macromolecules, 47(23), 8238-8246 (2014).   DOI
14 N. Ziv, and D. R. Dekel, A practical method for measuring the true hydroxide conductivity of anion exchange membranes, Electrochem. Commun., 88, 109-113 (2018).   DOI
15 Y. Zheng, T. J. Omasta, X. Peng, L. Wang, J. R. Varcoe, B. S. Pivovar, and W. E. Mustain, Quantifying and elucidating the effect of CO2 on the thermodynamics, kinetics and charge transport of AEMFCs, Energy Environ. Sci., 12(9), 2806-2819 (2019).   DOI
16 A. F. Nugraha, S. Kim, S. H. Shin, H. Lee, D. Shin, and B. Bae, Chemically durable poly (phenylene-co-arylene ether) multiblock copolymer-based anion exchange membranes with different hydrophobic moieties for application in fuel cell, Macromolecules, 53(23), 10538-10547 (2020).   DOI
17 E. Yuk, H. Lee, N. Jung, D. Shin, and B. Bae, Electrochemical characteristics of electrode by various preparation methods for alkaline membrane fuel cell, J. Korean Electrochem. Soc., 24(4), 106-112 (2021).   DOI
18 A. M. Barnes, B. Liu, and S. K. Buratto, Humidity-dependent surface structure and hydroxide conductance of a model quaternary ammonium anion exchange membrane, Langmuir, 35(44), 14188-14193 (2019).   DOI
19 S. Gottesfeld, D. R. Dekel, M. Page, C. Bae, Y. Yan, P. Zelenay, and Y. S. Kim, Anion exchange membrane fuel cells: Current status and remaining challenges, J. Power Sources, 375, 170-184 (2018).   DOI
20 M. G. Marino, and K. D. Kreuer, Alkaline stability of quaternary ammonium cations for alkaline fuel cell membranes and ionic liquids, ChemSusChem, 8(3), 513-523 (2015).   DOI
21 K. H. Lee, D. H. Cho, Y. M. Kim, S. J. Moon, J. G. Seong, D. W. Shin, J.-Y. Sohn, J. F. Kim, and Y. M. Lee, Highly conductive and durable poly (arylene ether sulfone) anion exchange membrane with end-group cross-linking, Energy Environ. Sci., 10(1), 275-285 (2017).   DOI
22 J. Muller, A. Zhegur, U. Krewer, J. R. Varcoe, and D. R. Dekel, Practical ex-situ technique to measure the chemical stability of anion-exchange membranes under conditions simulating the fuel cell environment, ACS Mater. Lett., 2(2), 168-173 (2020).   DOI