Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.2.69

Research Trend in Electrocatalysts for Anion Exchange Membrane Water Electrolysis  

Kim, Jiyoung (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Kiyoung (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.2, 2022 , pp. 69-80 More about this Journal
Abstract
The anion exchange membrane (AEM) water electrolysis for high purity hydrogen production is attracting attention as a next-generation green hydrogen production technology by using inexpensive non-noble metal-based catalysts instead of conventional precious metal catalysts used in proton exchange membrane (PEM) water electrolysis systems. However, since AEM water electrolysis technology is in the early stages of development, it is necessary to develop research on AEM, ionomers, electrode supports and catalysts, which are key elements of AEM water electrolysis. Among them, current research in the field of catalysts is being studied to apply a previously developed half-cell catalyst for alkali to the AEM system, and the applied catalyst has disadvantages of low activity and durability. Therefore, this review presented a catalyst synthesis technique that promoted oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) using a non-noble metal-based catalyst in an alkaline medium.
Keywords
Electrocatalyst; Water Electrolysis; Anion Exchange Membrane;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Zakaria, Siti, K. Kamarudin, K. Anuar, A. Wahid, K. Malaysia, M. Bangi, K. Lumpur, and B.B. Bangi, Fuel cells as an advanced alternative energy source for the residential sector applications in Malaysia, Int. J. Energy Res., 45(4), 5032-5057 (2020).
2 S. Rau, S. Vierrath, J. Ohlmann, A. Fallisch, D. Lackner, F. Dimroth, and T. Smolinka, Highly efficient solar hydrogen generation-an integrated concept joining III-V solar cells with PEM electrolysis cells, Energy Technol., 2(1), 43-53 (2014).   DOI
3 X. Shen, X. Zhang, G. Li, T. Tjing Lie, and L. Hong, Experimental study on the external electrical thermal and dynamic power characteristics of alkaline water electrolyzer, Int. J. Energy Res., 42(10), 3244-3257 (2018).   DOI
4 J.E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrog. Energy, 26(3), 185-190 (2001).   DOI
5 P.P. Edwards, V.L. Kuznetsov, W.I.F. David, and N.P. Brandon, Hydrogen and fuel cells: Towards a sustainable energy future, Energy Policy, 36(12), 4356-4362 (2008).   DOI
6 W. Xiang and Y. Chen, Hydrogen and electricity from coal with carbon dioxide separation using chemical looping reactors, Energy Fuels, 21(4), 2272-2277 (2007).   DOI
7 D.M.F. Santos and C.A.C. Sequeira, Hydrogen production by alkaline water electrolysis, Quim. Nova, 36(8), 1176-1193 (2013).   DOI
8 M. Langemann, D.L. Fritz, M. Muller, and D. Stolten, Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis, Int. J. Hydrog. Energy, 40(35), 11385-11391 (2015).   DOI
9 M. Gong and H. Dai, A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts, Nano Res., 8(1), 23-39 (2015).   DOI
10 D. Xu, M.B. Stevens, M.R. Cosby, S.Z. Oener, A.M. Smith, L.J. Enman, K.E. Ayers, C.B. Capuano, J.N. Renner, N. Danilovic, Y. Li, H. Wang, Q. Zhang, and S.W. Boettcher, Earth-abundant oxygen electrocatalysts for alkaline anion-exchange-membrane water electrolysis: Effects of catalyst conductivity and comparison with performance in three-electrode cells, ACS Catal., 9(1), 7-15 (2019).   DOI
11 P. Chen, X. Hu, P. Chen, and X. Hu, High-efficiency anion exchange membrane water electrolysis employing non-noble metal catalysts, Adv. Energy Mater., 10(39), 2002285 (2020).   DOI
12 H. Koshikawa, H. Murase, T. Hayashi, K. Nakajima, H. Mashiko, S. Shiraishi, and Y. Tsuji, Single nanometer-sized NiFe-layered double hydroxides as anode catalyst in anion exchange membrane water electrolysis cell with energy conversion efficiency of 74.7% at 1.0 A cm-2, ACS Catal., 10(3), 1886-1893 (2020).   DOI
13 G.W. Crabtree and M.S. Dresselhaus, The hydrogen fuel alternative, Mrs Bull., 33(4), 421-428 (2008).   DOI
14 H.A. Miller, K. Bouzek, J. Hnat, S. Loos, C.I. Bernacker, T. Weissgarber, L. Rontzsch, and J. Meier-Haack, Green hydrogen from anion exchange membrane water electrolysis: A review of recent developments in critical materials and operating conditions, Sustain. Energy Fuels, 4(5), 2114-2133 (2020).   DOI
15 A. Loh, X. Li, O.O. Taiwo, F. Tariq, N.P. Brandon, P. Wang, K. Xu, and B. Wang, Development of NiFe based ternary metal hydroxides as highly efficient oxygen evolution catalysts in AEM water electrolysis for hydrogen production, Int. J. Hydrog. Energy, 45(46), 24232-24247 (2020).   DOI
16 R. Rath, P. Kumar, S. Mohanty, Sanjay, and K. Nayak, Recent advances, unsolved deficiencies, and future perspectives of hydrogen fuel cells in transportation and portable sectors, Int. J. Energy Res., 43(15), 8931-8955 (2019).   DOI
17 S.H. Ahn, B.S. Lee, I. Choi, S.J. Yoo, H.J. Kim, E.A. Cho, D. Henkensmeier, S.W. Nam, S.K. Kim, and J.H. Jang, Development of a membrane electrode assembly for alkaline water electrolysis by direct electrodeposition of nickel on carbon papers, Appl. Catal. B Environ., 154, 197-205 (2014).
18 S. Park, J. Ryu, and G. Sohn, Techno-economic analysis(TEA) on hybrid process for hydrogen production combined with biomass gasification using oxygen released from the water electrolysis based on renewable energy, J. Kor. Inst. Gas, 24(5), 65-73 (2020).   DOI
19 A. Manabe, M. Kashiwase, T. Hashimoto, T. Hayashida, A. Kato, K. Hirao, I. Shimomura, and I. Nagashima, Basic study of alkaline water electrolysis, Electrochim. Acta, 100, 249-256 (2013).   DOI
20 D.Y.C. Leung, H. Yang, and J. Yan, Novel studies on hydrogen, fuel cell and battery energy systems, Int. J. Energy Res., 35(1), 1-1 (2011).   DOI
21 S. K. Ryi, J. Y. Han, C. H. Kim, H. Lim, and H. Y. Jung, Technical trends of hydrogen production, Clean Technol., 23(2), 121-132 (2017).   DOI
22 S. Marini, P. Salvi, P. Nelli, R. Pesenti, M. Villa, M. Berrettoni, G. Zangari, and Y. Kiros, Advanced alkaline water electrolysis, Electrochim. Acta, 82, 384-391 (2012).   DOI
23 Z. Zakaria, Z.A. Mat, S.H.A. Hassan, Y.B. Kar, and U.T. Nasional, A review of solid oxide fuel cell component fabrication methods toward lowering temperature, Int. J. Energy Res., 44(2), 594-611 (2020).   DOI
24 M. K. Cho, A. Lim, S. Y. Lee, H. Kim, S. J. Yoo, Y. Sung, H. S. Park, and J. H. Jang, A review on membranes and catalysts for anion exchange membrane water electrolysis single cells, J. Electrochem. Sci. Technol., 8(3), 183-196 (2017).   DOI
25 E. Cossar, A.O. Barnett, F. Seland, and E.A. Baranova, The performance of nickel and nickel-iron catalysts evaluated as anodes in anion exchange membrane water electrolysis, Catalysts, 9(10), 814 (2019).   DOI
26 F. Gutierrez-Martin, A. Ochoa-Mendoza, and L.M. Rodriguez-Anton, Pre-investigation of water electrolysis for flexible energy storage at large scales: The case of the spanish power system, Int. J. Hydrog. Energy, 40(15), 5544-5551 (2015).   DOI
27 S. Oh, J. Yang, C. H. Chu, I. C. Na, and K. Park, Degradation evaluation of PEM water electrolysis by method of degradation analysis used in PEMFC, Korean Chem. Eng. Res., 59(1), 1-5 (2021).
28 Q. Feng, X.Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, A review of proton exchange membrane water electrolysis on degradation mechanisms and mitigation strategies, J. Power Sources, 366, 33-35 (2017).   DOI
29 W.B. Han, H.S. Cho, W.C. Cho, and C.H. Kim, Understanding the effect on hydrogen evolution reaction in alkaline medium of thickness of physical vapor deposited Al-Ni electrodes, KHNES, 28(6), 610-617 (2017).
30 J.C. Ganley, High temperature and pressure alkaline electrolysis, Int. J. Hydrog. Energy, 34(9), 3604-3611 (2009).   DOI
31 X. Wu and K. Scott, CuxCo3-xO4 (0 ≤ x < 1) nanoparticles for oxygen evolution in high performance alkaline exchange membrane water electrolysers, J. Mater. Chem., 21(33), 12344-12351 (2011).   DOI
32 A.Y. Faid, A.O. Barnett, F. Seland, and S. Sunde, NiCu mixed metal oxide catalyst for alkaline hydrogen evolution in anion exchange membrane water electrolysis, Electrochim. Acta, 371, 137837 (2021).   DOI
33 M. Gong, Y. Li, H. Wang, Y. Liang, J.Z. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai, An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation, J. Am. Chem. Soc., 135(23), 8452-8455 (2013).   DOI
34 Z. Qiu, C.W. Tai, G.A. Niklasson, and T. Edvinsson, Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting, Energy Environ. Sci., 12(2), 572-581 (2019).   DOI
35 C.C. Pavel, F. Cecconi, C. Emiliani, S. Santiccioli, A. Scaffidi, S. Catanorchi, and M. Comotti, Hydrogen production highly efficient platinum group metal free based membrane-electrode assembly for anion exchange membrane water electrolysis, Angew. Chem. Int. Ed., 53(5), 1378-1381 (2014).   DOI
36 S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J.-B. Baek, and L. Dai, BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction, Angew. Chem. Int. Ed., 51(17), 4209-4212 (2012).   DOI
37 Y. Jiao, Y. Zheng, M. Jaroniec, and S. Z. Qiao, Origin of the electrocatalytic oxygen reduction activity of graphene-based catalysts: A roadmap to achieve the best performance, J. Am. Chem. Soc., 136(11), 4394-4403 (2014).   DOI
38 L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, X. Wang, Q. Wu, J. Ma, Y. Ma, and Z. Hu, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction, Angew. Chem. Int. Ed., 50(31), 7132-7135 (2011).   DOI
39 R. Li, Z. Wei, and X. Gou, Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution, ACS Catal., 5(7), 4133-4142, (2015).   DOI
40 S. Seetharaman, R. Balaji, K. Ramya, K.S. Dhathathreyan, and M. Velan, Graphene oxide modified non-noble metal electrode for alkaline anion exchange membrane water electrolyzers, Int. J. Hydrog. Energy, 38(35), 14934-14942 (2013).   DOI
41 M. Asif and T. Muneer, Energy supply, its demand and security issues for developed and emerging economies, Renew. Sust. Energ. Rev., 11(7), 1388-1413 (2007).   DOI
42 D. Strmcnik, P.P. Lopes, B. Genorio, V.R. Stamenkovic, and N.M. Markovic, Design principles for hydrogen evolution reaction catalyst materials, Nano Energy, 29, 29-36 (2016).   DOI
43 J. Lee, H. Jung, Y.S. Park, S. Woo, N. Kwon, Y. Xing, S.H. Oh, S.M. Choi, J.W. Han, and B. Lim, Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer, Chem. Eng. J., 420, 127670 (2021).   DOI
44 I. Vincent and D. Bessarabo, Low cost hydrogen production by anion exchange membrane electrolysis: A review, Renew. Sust. Energ. Rev., 81, 169 (2018).
45 E. Rasten, G. Hagen, and R. Tunold, Electrocatalysis in water electrolysis with solid polymer electrolyte, Electrochim. Acta, 48(25-26), 3945-3952 (2003).   DOI
46 Z.-W. Liu, F. Peng, H.-J. Wang, H. Yu, W.-X. Zheng, and J. Yang, Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium, Angew. Chem. Int. Ed., 50(14), 3257-3261 (2011).   DOI
47 P. Millet, N. Mbemba, S.A. Grigoriev, V.N. Fateev, A. Aukauloo, and C. Etievant, Electrochemical performances of PEM water electrolysis cells and perspectives, Int. J. Hydrog. Energy, 36(6), 4134-4142 (2011).   DOI
48 A. Ursua, L.M. Gandia, and P. Sanchis, Hydrogen production from water electrolysis: Current status and future trends, Proc. IEEE, 100(2), 410-426 (2012).   DOI