Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.2.51

Review on Effective Skills to Inhibit Dendrite Growth for Stable Lithium Metal Electrode  

Kim, Yerang (Department of Chemical Engineering, the University of Seoul)
Park, Jihye (Department of Chemical Engineering, the University of Seoul)
Hwang, Yujin (Department of Chemical Engineering, the University of Seoul)
Jung, Cheolsoo (Department of Chemical Engineering, the University of Seoul)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.2, 2022 , pp. 51-68 More about this Journal
Abstract
Although lithium metal batteries have a high energy density, experimental skills capable of solving lots of problems induced by dendrite such as short circuit, low coulomb efficiency, capacity loss, and cycle performance are still only in academic research stage. In this paper, research cases for dendrite growth inhibition on lithium metal electrode were classified into four types: flexible SEI (solid electrolyte interface) layer responding to volume expansion of lithium metal electrode, SEI supporting layer to inhibit dendrite growth physically, SHES (self-healing electrostatic shield) mechanism to adjust lithium growth by leading uniform diffusion of Li+ ions, and finally micro-patterning to induce uniform deposition of lithium. We hope to advance the practical use of lithium metal electrode by analyzing pros and cons of this classification.
Keywords
Lithium Electrode; Dendrite; Solid Electrolyte Interface; Self-Healing Electrostatic Shield; Micro-Patterning;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries., npj Computational Materials, 4(1), 1-26 (2018).   DOI
2 Y. Feng, C. Zhang, X. Jiao, Z. Zhou, and J. Song, Highly stable lithium metal anode with near-zero volume change enabled by capped 3D lithophilic framework, Energy Storage Mater., 25, 172-179 (2020).   DOI
3 J. Li, Z. Kong, X. Liu, B. Zheng, Q. H. Fan, E. Garratt, T. Schuelke, K. Wang, H. Xu, H. Jin, Strategies to anode protection in lithium metal battery: A review, InfoMat, 3(12), 1333-1363 (2021).   DOI
4 T. B. T. Truong, Y.-R. Chen, G.-Y. Lin, H.-T. Lin, Y.-S. Wu, C.-C. Yang, Lithium polyacrylate polymer coating enhances the performance of graphite/silicon/carbon composite anodes, Electrochim. Acta, 365, 137387 (2021).   DOI
5 J. Li, D.-B. Le, P. P. Ferguson, and J. R. Dahn, Lithium polyacrylate as a binder for tin-cobalt-carbon negative electrodes in lithium-ion batteries, Electrochim. Acta, 55(8), 2991-2995 (2010).   DOI
6 S. Choudhury and L. A. Archer, Lithium fluoride additives for stable cycling of lithium batteries at high current densities, Adv. Electron. Mater., 2(2), 1500246 (2016).   DOI
7 Z. Xu, J. Yang, T. Zhang, Y. Nuli, J. Wang, and S. Hirano, Silicon microparticle anodes with self-healing multiple network binder, Joule, 2(5), 950-961 (2018).   DOI
8 W. Liu, P. Liu, and D, Mitlin, Review of emerging concepts in SEI analysis and artificial SEI membranes for lithium, sodium, and potassium metal battery anodes, Adv. Energy Mater., 10(43), 2002297 (2020).   DOI
9 Y. Ozhabes, D. Gunceler, and T. A. Arias, Stability and surface diffusion at lithium-electrolyte interphases with connections to dendrite suppression, arXiv, 1504.05799, (2015).
10 W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7(2), 513-537 (2014).   DOI
11 S. Jin, Z. Sun, Y. Guo, Z. Qi, C. Guo, X. Kong, Y. Zhu, and H. Ji, High areal capacity and lithium utilization in anodes made of covalently connected graphite microtubes, Adv. Mater., 29(38), 1700783 (2017).   DOI
12 D. J. Lee, H. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode, Adv. Mater., 28(5), 857-863 (2016).   DOI
13 H. Wada, M. Menetrier, A. Levasseur, and P. Hagenmuller, Preparation and ionic conductivity of new B2S3-Li2S-LiI glasses, Mater. Res. Bull., 18(2), 189-193 (1983).   DOI
14 S. Di, X. Nie, G. Ma, W. Yuan, Y. Wang, Y. Liu, S. Shen, and N. Zhang, Zinc anode stabilized by an organic-inorganic hybrid solid electrolyte interphase, Energy Storage Mater., 43, 375-382 (2021).   DOI
15 H. Ha, J. Park, K. R. Ha, B. D. Freeman, and C. J. Ellison, Synthesis and gas permeability of highly elastic poly (dimethylsiloxane)/graphene oxide composite elastomers using telechelic polymers, Polymer, 93, 53-60 (2016).   DOI
16 Q. Zhao, Z. Tu, S. Wei, K. Zhang, S. Choudhury, X. Liu, and L. A. Archer, Building organic/inorganic hybrid interphases for fast interfacial transport in rechargeable metal batteries, Angew. Chem. Int. Ed., 57(4), 992-996 (2018).   DOI
17 X.-B. Cheng, C. Yan, H.-J. Peng, J.-Q. Huang, S.-T. Yang, and Q. Zhang, Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes, Energy Storage Mater., 10, 199-205 (2018).   DOI
18 H. Ohtaki, Structural studies on solvation and complexation of metal ions in nonaqueous solutions, Pure Appl. Chem., 59(9), 1143-1150 (1987).   DOI
19 Y. Kameda, Y. Umebayashi, M. Takeuchi, M. A. Wahab, S. Fukuda, S.-I. Ishiguro, M. Sasaki, Y. Amo, and T. Usuki, Solvation structure of Li+ in concentrated LiPF6-propylene carbonate solutions, J. Phys. Chem. B, 111(22), 6104-6109 (2007).   DOI
20 S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25 C, J. Chem. Phys., 101(8), 6964-6974 (1994).   DOI
21 S. Lee, D. Seok, Y. Jeong, and H. Sohn, Surface Modification of Li metal electrode with PDMS/GO composite thin film: Controlled growth of Li layer and improved performance of lithium metal battery (LMB), Membr. J., 30(1), 38-45 (2020).   DOI
22 J. T. Lee, H. Kim, M. Oschatz, D. C. Lee, F. Wu, H.-T. Lin, B. Zdyrko, W. I. Cho, S. Kaskel, and G. Yushin, Micro-and Mesoporous Carbide-Derived Carbon-Selenium Cathodes for High-Performance Lithium Selenium Batteries, Adv. Energy Mater., 5(1), 1400981 (2015).   DOI
23 B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Q. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017).   DOI
24 Q. Xu, Y. Yang, and H. Shao, Enhanced cycleability and dendrite-free lithium deposition by adding potassium ion to the electrolyte for lithium metal batteries, Electrochim. Acta, 212, 758-766 (2016).   DOI
25 J.-L. Lin, C. Huang, C.-J. M. Chin, and J. R. Pan, The origin of Al (OH) 3-rich and Al13-aggregate flocs composition in PACl coagulation, Water Res., 43(17), 4285-4295 (2009).   DOI
26 A. Manthiram, A reflection on lithium-ion battery cathode chemistry, Nat. Commun., 11(1), 1-9 (2020).   DOI
27 H. Xiang, D. Mei, P. Yan, P. Bhattacharya, S. D. Burton, A.W. Cresce, R. Cao, M. H. Engelhard, M. E. Bowden, Z. Zhu, B. J. Polzin, C.-M. Wang, K. Xu, J.-G. Zhang, and W. Xu, The role of cesium cation in controlling interphasial chemistry on graphite anode in propylene carbonate-rich electrolytes, ACS Appl. Mater. Interfaces, 7(37), 20687-20695 (2015).   DOI
28 N. W. Li, Y. Shi, Y. X. Yin, X. X. Zeng, J. Y. Li, C.-J. Li, L.-J. Wan, R. Wen, and Y.-G. Guo, A flexible solid electrolyte interphase layer for long-life lithium metal anodes, Angew. Chem. Int. Ed., 57(6), 1505-1509 (2018).   DOI
29 G. N. Lewis and F. G. Keyes, The potential of the lithium electrode, J. Am. Chem. Soc., 35(4), 340-344 (1913).   DOI
30 C. A. Vincent, Lithium batteries: a 50-year perspective, 1959-2009, Solid State Ionics, 134(1-2), 159-167 (2000).   DOI
31 X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review', Chem. Rev., 117(15), 10403-10473 (2017).   DOI
32 Q. Zhang, S. Liu, Y. Lu, L. Xing, and W. Li, Artificial interphases enable dendrite-free li-metal anodes, J. Energy Chem., 58, 198-206 (2021).   DOI
33 L. Ma, J. Cui, S. Yao, X. Liu, Y. Luo, X. Shen, and J.-K. Kim, Dendrite-free lithium metal and sodium metal batteries' Energy Storage Mater., 27, 522-554 (2020).   DOI
34 H. Liu, H. Zhou, B. S. Lee, X. Xing, M. Gonzalez, and P. Liu, Suppressing lithium dendrite growth with a single-component coating, ACS Appl. Mater. Interfaces, 9(36), 30635-30642 (2017).   DOI
35 H. Liu, X. Wang, H. Zhou, H. D. Lim, X. Xing, Q. Yan, Y. S. Meng, and P. Liu, Structure and solution dynamics of lithium methyl carbonate as a protective layer for lithium metal, ACS Appl. Energy Mater., 1(5), 1864-1869 (2018).   DOI
36 Y. Yuan, F. Wu, G. Chen, Y. Bai, and C. Wu, Porous LiF layer fabricated by a facile chemical method toward dendrite-free lithium metal anode, J. Energy Chem., 37, 197-203 (2019).   DOI
37 G. Li, Y. Gao, X. He, Q. Huang, S. Chen, S. H. Kim, and D. Wang, Organosulfide-plasticized solid-electrolyte interphase layer enables stable lithium metal anodes for long-cycle lithium-sulfur batteries, Nat. Commun., 8(1), 1-10 (2017).   DOI
38 H. Chen, A. Pei, D. Lin, J. Xie, A. Yang, J. Xu, K. Lin, and J. Wang, Uniform high ionic conducting lithium sulfide protection layer for stable lithium metal anode, Adv. Energy Mater., 9(22), 1900858 (2019).   DOI
39 J, Yang, C. Hu, Y. Jia, Y. Pang, L. Wang, W. Liu, and X. Sun, Surface restraint synthesis of an organic-inorganic hybrid layer for dendrite-free lithium metal anode, ACS Appl. Mater. Interfaces, 11(9), 8717-8724 (2019).   DOI
40 J. Zhu, J. Yang, J. Zhou, T. Zhang, L. Li, J. Wang, and Y. Nuli, A stable organic-inorganic hybrid layer protected lithium metal anode for long-cycle lithium-oxygen batteries, J. Power Sources, 366, 265-269 (2017).   DOI
41 Y. Liu, D. Lin, P. Y. Yuen, K. Liu, J. Xie, R. H. Dauskardt, and Y. Cui, An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes, Adv. Mater., 29(10), 1605531 (2017).   DOI
42 H. Lee, D. J. Lee, Y. J. Kim, J. K. Park, and H. T. Kim, A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries, J. Power Sources, 284, 103-108 (2015).   DOI
43 D. Wang, H. Liu, M. Li, D. Xia, J. Holoubek, Z. Deng, M. Yu, J.Tian, Z. Shan, S. Pi. Ong, P. Liu, and Z. Chen, A long-lasting dual-function electrolyte additive for stable lithium metal batteries, Nano Energy, 75, 104889 (2020).   DOI
44 W. J. Kwak, S. J. Park, H. G. Jung, and Y.-K. Sun, Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li-O2 batteries, Adv. Energy Mater., 8(9), 1702258 (2018).   DOI
45 Q. Wu, Z. Yao, A. Du, H. Wu, M. Huang, J. Xu, F. Cao, and C. Li, Oxygen-defect-rich coating with nanoporous texture as both anode host and artificial SEI for dendrite-mitigated lithium-metal batteries, J. Mater. Chem. A, 9(9), 5606-5618 (2021).   DOI
46 J. Pan, Y.-T. Cheng, and Y. Qi, General method to predict voltage-dependent ionic conduction in a solid electrolyte coating on electrodes, Phys. Rev. B, 91(13), 134116 (2015).   DOI
47 Y. J. Kim, H. S. Jin, D. H. Lee, J. Choi, W. Jo, H. Noh, J. Lee, H. Chu, H. Kwack, F. Ye, and H. Lee, Guided Lithium Deposition by Surface Micro-Patterning of Lithium-Metal Electrodes, Chem. Electro. Chem., 5(21), 3169-3175 (2018).
48 W. B. Jung, O. B. Chae, M. Kim, Y. Kim, Y.J. Hong, J. Y. Kim, S. Choi, D. Y. Kim, S. Moon, J. Suk, Y. Kang, M. Wu, and H.-T. Jung, Effect of highly periodic Au nanopatterns on dendrite suppression in lithium metal batteries, ACS Appl. Mater. Interfaces, 13(51), 60978-60986 (2021).   DOI
49 J. Yamaki, S. Tobishima, K. Hayashi, K. Saito, Y. Nemoto, and M. Arakawa, A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte, J. Power Sources, 74(2), 219-227 (1998).   DOI
50 H. Ye, Y. X. Yin, S. F. Zhang, Y. Shi, L. Liu, X. X. Zeng, R. Wen, Y.-G. Guo, and L.-J. Wan, Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode, Nano Energy, 36, 411-417 (2017).   DOI
51 R. A. Huggins, Solid Electrolyte Battery Materials, STANFORD UNIV CALIF CENTER FOR MATERIALS RESEARCH, 1977.
52 G. Hou, C. Ci, D. Salpekar, Q. Ai, Q. Chen, H. Guo, L. Chen, X. Zhang, J. Cheng, K. Kato, R. Vajtai, P. Si, G. Babu, L. Ci, and P. M. Ajayan, Stable lithium metal anode enabled by an artificial multi-phase composite protective film, J. Power Sources, 448, 227547 (2020).   DOI
53 H. Ha, J. Park, S. Ando, C. B. Kim, K. Nagai, B. D. Freeman, and C. J. Ellison, Gas permeation and selectivity of poly (dimethylsiloxane)/graphene oxide composite elastomer membranes, J. Membr. Sci., 518, 131-140 (2016).   DOI
54 M. Liu, J. Sun, and Q. Chen, Influences of heating temperature on mechanical properties of polydimethylsiloxane, Sens. Actuator A Phys., 151(1), 42-45 (2009).   DOI
55 W.-J. Kwak, H.-G. Jung, D. Aurbach, and Y.-K. Sun, Optimized bicompartment two solution cells for effective and stable operation of Li-O2 batteries, Adv. Energy Mater., 7(21), 1701232 (2017).   DOI
56 F. Ding, W. Xu, X. Chen, J. Zhang, Y. Shao, M. H. Engelhard, Y. Zhang, T. A. Blake, G. L. Graff, X. Liu, and J.-G. Zhang, Effects of cesium cations in lithium deposition via self-healing electrostatic shield mechanism, J. Phys. Chem. C, 118(8), 4043-4049 (2014).   DOI
57 S. H. Lee and J. C. Rasaiah, Molecular dynamics simulation of ion mobility. 2. Alkali metal and halide ions using the SPC/E model for water at 25 C, J. Phys. Chem., 100(4), 1420-1425 (1996).   DOI
58 E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc., 126(12), 2047 (1979).   DOI
59 F. Ding, W. Xu, G. L. Graff, J. Zhang, M. L. Sushko, X. Chen, Y. Shao, M. H. Engelhard, Z. Nie, J. Xiao, X. Liu, P. V. Sushko, J. Liu, and J.-G. Zhang, Dendrite-free lithium deposition via self-healing electrostatic shield mechanism, J. Am. Chem. Soc., 135(11), 4450-4456 (2013).   DOI
60 Z. Liu, Y. Qi, Y. X. Lin, L. Chen, P. Lu, and L. Q. Chen, Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth, J. Electrochem. Soc., 163(3), A592 (2016).   DOI
61 X. Wang, R. Kerr, F. Chen, N. Goujon, J. M. Pringle, D. Mecerreyes, M. Forsyth, and P. C. Howlett, Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes, Adv. Mater., 32(18), 1905219 (2020).   DOI
62 Q. Zhang, J. Pan, P. Lu, Z. Liu, M. W. Verbrugge, B. W. Sheldon, Y.-T. Cheng, Y. Qi, and X. Xiao, Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries, Nano Lett., 16(3), 2011-2016 (2016).   DOI
63 Q. Li, B. Quan, W. Li, J. Lu, J. Zheng, X. Yu, J. Li, and H. Li, Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure, Nano Energy, 45, 463-470 (2018).   DOI
64 M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, Brief history of early lithium-battery development, Materials, 13(8), 1884 (2020).   DOI
65 Y. Yuan, F. Wu, Y. Bai, Y. Li, G. Chen, Z. Wang, and C. Wu, Regulating Li deposition by constructing LiF-rich host for dendrite-free lithium metal anode, Energy Storage Mater., 16, 411-418 (2019).   DOI
66 Y. Lyu, X. Wu, K. Wang, Z. Feng, T. Cheng, Y. Liu, M. Wang, R. Chen, L. Xu, J. Zhou, Y. Lu, and B. Guo, An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2), 2000982 (2021).   DOI
67 D. Luo, L. Zheng, Z. Zhang, M. Li, Z. Chen, R. Cui, Y. Shen, G. Li, R. Feng, S. Zhang, G. Jiang, L. Chen, A. Yu, and X. Wang, Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries' Nat. Commun., 12, 186. (2021).   DOI
68 H. Huo, J. Gao, N. Zhao, D. Zhang, N.G. Holmes, X. Li, Y. Sun, J. Fu, R. Li, X. Guo, and X. Sun, A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries, Nat. Commun., 12(1), 1-10 (2021).   DOI
69 F. Liu, L. Wang, Z. Zhang, P. Shi, Y. Feng, Y. Yao, S. Ye, H. Wang, X. Wu, and Y. Yu, A mixed lithium-ion conductive Li2S/Li2Se protection layer for stable lithium metal anode, Adv. Funct. Mater., 30(23), 2001607 (2020).   DOI
70 G. Li, Q. Huang, X. He, Y. Gao, D. Wang, S. H. Kim, and D. Wang, Self-formed hybrid interphase layer on lithium metal for high-performance lithium-sulfur batteries, ACS Nano, 12(2), 1500-1507 (2018).   DOI
71 B. Zhu, Y. Jin, X. Hu, Q. Zheng, S. Zhang, Qi. Wang, and J. Zhu, Poly (dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes, Adv. Mater., 29(2), 1603755 (2017).   DOI
72 W. J. Kwak, J. Park, T. T. Nguyen, H. Kim, H. R. Byon, M. Jang, and Y.-K. Sun, A dendrite-and oxygen-proof protective layer for lithium metal in lithium-oxygen batteries, J. Mater. Chem. A, 7(8), 3857-3862 (2019).   DOI
73 J. Zeng, Q. Liu, D. Jia, R. Liu, S. Liu, B. Zheng, Y. Zhu, R. Fu, and D. Wu, A polymer brush-based robust and flexible single-ion conducting artificial SEI film for fast charging lithium metal batteries, Energy Storage Mater., 41, 697-702 (2021).   DOI
74 S. Li, S. Fang, H. Dou, and X. Zhang, RbF as a dendriteinhibiting additive in lithium metal batteries, ACS Appl. Mater. Interfaces, 11(23), 20804-20811 (2019).   DOI
75 J. Park, J. Jeong, Y. Lee, M. Oh, M.-H. Ryou, and Y. M. Lee, Micro-patterned lithium metal anodes with suppressed dendrite formation for post lithium-ion batteries, Adv. Mater. Interfaces, 3(11), 1600140 (2016).   DOI
76 S. Schweidler, L. Biasi, A. Schiele, P. Hartmann, T. Brezesinski, and J. Janek, Volume changes of graphite anodes revisited: a combined operando X-ray diffraction and in situ pressure analysis study, J. Phys. Chem. C, 122(16), 8829-8835 (2018).   DOI
77 N. P. W. Pieczonka, V. Borgel, B. Ziv, N. Leifer, V. Dargel, D. Aurbach, J.-H. Kim, Z. Liu, X. Huang, S. A. Krachkovskiy, G. R. Goward, I. Halalay, B. R. Powell, and A. Manthiram, Lithium Polyacrylate (LiPAA) as an Advanced Binder and a Passivating Agent for High-Voltage Li-Ion Batteries, Adv. Energy Mater., 5(23), 1501008 (2015).   DOI