Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.1.32

Improvement of Electrochemical Performance of Lithium-ion Secondary Batteries using Double-Layered Thick Cathode Electrodes  

Phiri, Isheunesu (Department of Chemical and Biological Engineering, Hanbat National University)
Kim, Jeong-Tae (Department of Chemical and Biological Engineering, Hanbat National University)
Kennedy, Ssendagire (Department of Chemical and Biological Engineering, Hanbat National University)
Ravi, Muchakayala (Department of Chemical and Biological Engineering, Hanbat National University)
Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.1, 2022 , pp. 32-41 More about this Journal
Abstract
Various steps in the electrode production process, such as slurry mixing, slurry coating, drying, and calendaring, directly affect the quality and, consequently, mechanical properties and electrochemical performance of electrodes. Herein, a new method of slurry coating is developed: Double-coated electrode. Contrary to single-coated electrode, the cathode is prepared by double coating, wherein each coat is of half the total loading mass of the single-coated electrode. Each coat is dried and calendared. It is found that the double-coated electrode possesses more uniform pore distribution and higher electrode density and allows lesser extent of particle segregation than the single-coated electrode. Consequently, the double-coated electrode exhibits higher adhesion strength (74.7 N m-1) than the single-coated electrode (57.8 N m-1). Moreover, the double-coated electrode exhibits lower electric resistance (0.152 Ω cm-2) than the single-coated electrode (0.177 Ω cm-2). Compared to the single-coated electrode, the double-coated electrode displays higher electrochemical performance by exhibiting better rate capability, especially at higher C rates, and higher long-term cycling performance. Despite its simplicity, the proposed method allows effective electrode preparation by facilitating high electrochemical performance and is applicable for the large-scale production of high-energy-density electrodes.
Keywords
Double coating; Segregation; Migration; Pore distribution; Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Zheng, L. Tan, G. Liu, X. Song, and V. S. Battaglia, Calendering effects on the physical and electrochemical properties of Li [Ni1/3Mn1/3Co1/3] O2 cathode, J. Power Sources, 208, 52-57, (2012).   DOI
2 H. Dreger, W. Haselrieder, and A. Kwade, Influence of dispersing by extrusion and calendering on the performance of lithium-ion battery electrodes, J. Energy Storage, 21, 231-240, (2019).   DOI
3 B. Vijayaraghavan, D. R. Ely, Y.-M. Chiang, R. Garcia-Garcia, and R. E. Garcia, An analytical method to determine tortuosity in rechargeable battery electrodes, J. Electrochem. Soc., 159(5), A548, (2012).   DOI
4 G. Sikha, B. N. Popov, and R. E. White, Effect of porosity on the capacity fade of a lithium-ion battery: Theory, J. Electrochem. Soc., 151(7), A1104, (2004).   DOI
5 B. Son, M.-H. Ryou, J. Choi, S.-H. Kim, J. M. Ko, and Y. M. Lee, Effect of cathode/anode area ratio on electrochemical performance of lithium-ion batteries, J. Power Sources, 243, 641-647, (2013).   DOI
6 F. Durst, R. Haas, and W. Interthal, The nature of flows through porous media, J. Non-Newton. Fluid Mech., 22(2), 169-189, (1987).   DOI
7 J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, and W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2(3), 1-8, (2017).
8 J. Liu, Z. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Li, B. Y. Liaw, P. Liu, and A. Manthiram, Pathways for practical high-energy long-cycling lithium metal batteries, Nat. Energy, 4(3), 180-186, (2019).   DOI
9 S. J. Babinec, H. Tang, G. Meyers, S. Hughes, and A. Talik, Composite cathode structure/property relationships, ECS Trans., 2(8), 93, (2007).   DOI
10 M. Singh, J. Kaiser, and H. Hahn, A systematic study of thick electrodes for high energy lithium ion batteries, J. Electroanal. Chem., 782, 245-249, (2016).   DOI
11 H. Staf, P. Lindskog, D. C. Andersson, and P.-L. Larsson, On the influence of material parameters in a complex material model for powder compaction, J. Mater. Eng. Perform., 25(10), 4408-4415, (2016).   DOI
12 R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Artificial interphases for highly stable lithium metal anode, Matter, 1(2), 317-344, (2019).   DOI
13 M. H. Braga, N. S. Grundish, A. J. Murchison, and J. B. Goodenough, Alternative strategy for a safe rechargeable battery, Energy Environm. Sci., 10(1), 331-336, (2017).   DOI
14 S.-J. Cho, D.-E. Yu, T. P. Pollard, H. Moon, M. Jang, O. Borodin, and S.-Y. Lee, Nonflammable lithium metal full cells with ultra-high energy density based on coordinated carbonate electrolytes, iScience, 23(2), 100844, (2020).   DOI
15 R. E. Garcia, and Y.-M. Chiang, Spatially resolved modeling of microstructurally complex battery architectures, J. Electrochem. Soc., 154(9), A856, (2007).   DOI
16 V. Ramadesigan, P. W. Northrop, S. De, S. Santhanagopalan, R. D. Braatz, and V. R. Subramanian, Modeling and simulation of lithium-ion batteries from a systems engineering perspective, J. Electrochem. Soc., 159(3), R31, (2012).   DOI
17 Y. Sheng, C. R. Fell, Y. K. Son, B. M. Metz, J. Jiang, and B. C. Church, Effect of calendering on electrode wettability in lithium-ion batteries, Front. Energy Res., 2, 56, (2014).
18 Y. Kuang, C. Chen, D. Kirsch, and L. Hu, Thick electrode batteries: principles, opportunities, and challenges, Adv. Energy Mater., 9(33), 1901457, (2019).   DOI
19 M. Baunach, S. Jaiser, S. Schmelzle, H. Nirschl, P. Scharfer, and W. Schabel, Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing, Dry. Technol., 34(4), 462-473, (2016).   DOI
20 S. Jaiser, L. Funk, M. Baunach, P. Scharfer, and W. Schabel, Experimental investigation into battery electrode surfaces: The distribution of liquid at the surface and the emptying of pores during drying, J. Colloid Interf. Sci., 494, 22-31, (2017).   DOI
21 F. Huttner, W. Haselrieder, and A. Kwade, The influence of different post?drying procedures on remaining water content and physical and electrochemical properties of lithium?ion batteries, Energy Technol., 8(2), 1900245, (2020).   DOI
22 J. Kumberg, W. Bauer, J. Schmatz, R. Diehm, M. Tonsmann, M. Muller, K. Ly, P. Scharfer, and W. Schabel, Reduced drying time of anodes for lithium?ion batteries through simultaneous multilayer coating, Energy Technol., 9(10), 2100367, (2021).   DOI
23 M. Muller, L. Pfaffmann, S. Jaiser, M. Baunach, V. Trouillet, F. Scheiba, P. Scharfer, W. Schabel, and W. Bauer, Investigation of binder distribution in graphite anodes for lithium-ion batteries, J. Power Sources, 340, 1-5, (2017).   DOI
24 B. G. Westphal, and A. Kwade, Critical electrode properties and drying conditions causing component segregation in graphitic anodes for lithium-ion batteries, J. Energy Storage, 18, 509-517, (2018).   DOI
25 W. Wang, H. Qi, P. Liu, Y. Zhao, and H. Chang, Numerical simulation of densification of Cu-Al mixed metal powder during axial compaction, Metals, 8(7), 537, (2018).   DOI
26 L.-C. Chen, D. Liu, T.-J. Liu, C. Tiu, C.-R. Yang, W.-B. Chu, and C.-C. Wan, Improvement of lithium-ion battery performance using a two-layered cathode by simultaneous slot-die coating, J. Energy Storage, 5, 156-162, (2016).   DOI
27 S. T. Taleghani, B. Marcos, K. Zaghib, and G. Lantagne, The effect of structural properties of a two-layered electrode on the Li-ion battery polarization, J. Electrochem. Soc., 166(2), A225, (2019).   DOI
28 J. Ott, B. Volker, Y. Gan, R. M. McMeeking, and M. Kamlah, A micromechanical model for effective conductivity in granular electrode structures, Acta Mech. Sin., 29(5), 682-698, (2013).   DOI
29 S. Choi, J. Kim, M. Eom, X. Meng, and D. Shin, Application of a carbon nanotube (CNT) sheet as a current collector for all-solid-state lithium batteries, J. Power Sources, 299, 70-75, (2015).   DOI
30 M. Singh, J. Kaiser, and H. Hahn, Thick electrodes for high energy lithium ion batteries, J. Electrochem. Soc., 162(7), A1196, (2015).   DOI
31 D. Jin, Y. Roh, T. Jo, M. H. Ryou, H. Lee, and Y. M. Lee, Robust cycling of ultrathin Li metal enabled by nitrate?preplanted Li powder composite, Adv. Energy Mater., 11(18), 2003769, (2021).   DOI
32 D. Liu, L. C. Chen, T. J. Liu, W. B. Chu, and C. Tiu, Improvement of lithium?ion battery performance by two?layered slot-die coating operation, Energy Technol., 5(8), 1235-1241, (2017).   DOI
33 T. Yoon, S. Park, J. Mun, J. H. Ryu, W. Choi, Y.-S. Kang, J.-H. Park, and S. M. Oh, Failure mechanisms of LiNi0.5Mn1.5O4 electrode at elevated temperature, J. Power Sources, 215, 312-316, (2012).   DOI
34 H. Bockholt, M. Indrikova, A. Netz, F. Golks, and A. Kwade, The interaction of consecutive process steps in the manufacturing of lithium-ion battery electrodes with regard to structural and electrochemical properties, J. Power Sources, 325, 140-151, (2016).   DOI
35 J.-H. Kim, S. C. Woo, M.-S. Park, K. J. Kim, T. Yim, J.-S. Kim, and Y.-J. Kim, Capacity fading mechanism of LiFePO4-based lithium secondary batteries for stationary energy storage, J. Power Sources, 229, 190-197, (2013).   DOI
36 C. J. Bae, C. K. Erdonmez, J. W. Halloran, and Y. M. Chiang, Design of battery electrodes with dual?scale porosity to minimize tortuosity and maximize performance, Adv. Mater., 25(9), 1254-1258, (2013).   DOI
37 B. Tran, I. O. Oladeji, Z. Wang, J. Calderon, G. Chai, D. Atherton, and L. Zhai, Adhesive PEG-based binder for aqueous fabrication of thick Li4Ti5O12 electrode, Electrochim. Acta, 88, 536-542, (2013).   DOI
38 G. Liu, H. Zheng, S. Kim, Y. Deng, A. Minor, X. Song, and V. Battaglia, Effects of various conductive additive and polymeric binder contents on the performance of a lithium-ion composite cathode, J. Electrochem. Soc., 155(12), A887, (2008).   DOI