Browse > Article
http://dx.doi.org/10.5229/JKES.2022.25.1.22

Analysis of Electrochemical Performance of Reduced Graphene Oxide based Symmetric Supercapacitor with different Aqueous Electrolytes  

Ravi, Sneha (Electrical Appliances Technology Division, Central Power Research Institute)
Kosta, Shivangi (Electrical Appliances Technology Division, Central Power Research Institute)
Rana, Kuldeep (Electrical Appliances Technology Division, Central Power Research Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.25, no.1, 2022 , pp. 22-31 More about this Journal
Abstract
Carbon nanomaterials are considered to be the materials of choice for the fabrication of electrochemical energy storage devices due to their stability, cost-effectiveness, well-established processing techniques, and superior performance compared to other active materials. In the present work, reduced graphene oxide (rGO) has been synthesized and used for the fabrication of a symmetric supercapacitor. The electrochemical performance of the fabricated supercapacitors with three different aqueous electrolytes namely 0.5 M H2SO4, 0.5 M H3PO4, and 1.0M Na2SO4 have been compared and analyzed. Among the three electrolytes, the highest areal specific capacitance of 14 mF/cm2 was calculated at a scan rate of 5 mV/s observed with 0.5M H3PO4 electrolyte. The results were also confirmed from the charge/discharge results where the supercapacitor with 0.5M H3PO4 electrolyte delivered a specific capacitance of 11 mF/cm2 at a current density of 0.16 mA/cm2. In order to assess the stability of the supercapacitor with different electrolytes, the cells were subjected to continuous charge/discharge cycling and it was observed that acidic electrolytes showed excellent cyclic stability with no appreciable drop in specific capacitance as compared to the neutral electrolyte.
Keywords
Aqueous Electrolyte; Energy Storage; Reduced graphene oxide (rGO); Supercapacitors;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. P. C. Trigueiro, R. L. Lavall, and G. G. Silva, 'Supercapacitors based on modified graphene electrodes with poly (ionic liquid)', Journal of Power Sources, 256, 264-273 (2014).   DOI
2 T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. J. Epstein, 'Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor', Nanoscale Res Lett, 10(1), 192 (2015).   DOI
3 Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, 'All-solid-state flexible ultrathin micro-supercapacitors based on graphene', Advanced Materials, 25(29), 4035-4042 (2013).   DOI
4 D. Wang, Y. Min, Y. Yu, and B. Peng, 'A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors', Journal of colloid and interface science, 417, 270-277 (2014).   DOI
5 K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, and F. Wang, 'Paper-based transparent flexible thin film supercapacitors', Nanoscale, 5(12), 5307-5311 (2013).   DOI
6 W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, 'Superior micro-supercapacitors based on graphene quantum dots', Advanced Functional Materials, 23(33), 4111-4122 (2013).   DOI
7 B. Paulchamy, G. Arthi, and B. D. Lignesh, 'A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial', J Nanomed Nanotechnol, 6(1), 253 (2015).
8 D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, 'Improved synthesis of graphene oxide', ACS nano, 4(8), 4806-4814 (2010).   DOI
9 Z. S. Wu, K. Parvez, X. Feng, and K. Mullen, 'Graphene-based in-plane micro-supercapacitors with high power and energy densities', Nature communications, 4(1), 1-8 (2013).
10 M. Wang, L. D. Duong, N. T. Mai, S. Kim, Y. Kim, H. Seo, Y. C. Kim, W. Jang, Y. Lee, J. Suhr, and J. D. Nam, 'All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method', ACS Appl. Mater. Interfaces, 7(2), 1348-1354 (2015).   DOI
11 A Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, & A. Cirera, 'A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study', Nanoscale Research Letters, 12(1), 639 (2017).   DOI
12 Q. Abbas, D. Pajak, E. Frackowiak, and F. Beguin, 'Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte', Electrochimica Acta, 140, 132-138 (2014).   DOI
13 A. Bello, F. Barzegar, M. J. Madito, D. Y. Momodu, A. A. Khaleed, T. M. Masikhwa, J. K. Dangbegnon, and N. Manyala, 'Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes', RSC advances, 6(72), 68141-68149 (2017).   DOI
14 Kuldeep Rana; K. Naga Mahesh; J. H. Ahn; Vinay Pratap Singh, 'Synthesis of additive free electrode material of supercapacitor for energy storage applications' pp.448, 11th International Conference on Industrial and Information Systems (ICIIS), (2016).
15 C. X. Guo, and C. M. Li, 'A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance', Energy Environ. Sci., 4(11), 4504-4507 (2011).   DOI
16 S. Sathyamoorthi, S. Tubtimkuna, and M. Sawangphruk, 'Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry', Journal of Energy Storage, 29, 101379, (2020).   DOI
17 B. E. Conway, 'Electrochemical supercapacitors: scientific fundamentals and technological applications', Springer Science & Business Media (2013).
18 Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, and Y. Zhang, 'Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor', ACS Appl. Mater. Interfaces, 8(8), 5251-5260 (2016).   DOI
19 J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, and L. Wei, 'High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets', Journal of Power Sources, 346, 120-127 (2017).   DOI
20 P. Simon, and Y. Gogotsi. 'Materials for electrochemical capacitors', Nature Materials, 7(11), 845-854 (2008).   DOI
21 W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, and M. Zhu, 'Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density', Carbon, 113, 151-158 (2017).   DOI
22 H. Zanin, E. Saito, H. J. Ceragioli, V. Baranauskas, and E. J. Corat, 'Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices', Materials Research Bulletin, 49, 487-493 (2014).   DOI
23 X. Yang, H. Niu, H. Jiang, Q. Wang, and F. Qu, 'A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes', J. Mater. Chem. A, 4(29), 11264-11275 (2016).   DOI
24 Wang, H. Zhang, and C. Cheng, 'Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor', Chemical Engineering Journal, 308, 1165-1173 (2017).   DOI
25 K. Rana, S. D. Kim, and J. H. Ahn, 'Additive-free thick graphene film as an anode material for flexible lithium-ion batteries' Nanoscale, 7, 7065-7071 (2015).   DOI
26 J. L. Shi, W. C. Du, Y. X. Yin, Y. G. Guo, and L. J. Wan, 'Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors', J. Mater. Chem. A, 2(28), 10830-10834 (2014).   DOI
27 D. Sun, X. Yan, J. Lang, and Q. Xue, 'High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper', Journal of Power Sources, 222, 52-58 (2013).   DOI
28 Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, 'Series of in-fiber graphene supercapacitors for flexible wearable devices', J. Mater. Chem. A, 3(6), 2547-2551 (2015).   DOI
29 F. T. Johra, and W. G. Jung, 'Hydrothermally reduced graphene oxide as a supercapacitor', Applied Surface Science, 357, 1911-1914 (2015).   DOI
30 P. Bandyopadhyay, T. Kuila, J. Balamurugan, T. T. Nguyen, N. H. Kim, and J. H. Lee, 'Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application', Chemical Engineering Journal, 308, 1174-1184 (2017).   DOI
31 R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS applied materials & interfaces, 9(49), 42797-42805 (2017).   DOI
32 S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, 'Hydrazine-reduction of graphite-and graphene oxide', Carbon, 49(9), 3019-3023 (2011).   DOI
33 C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, 'A review of electrolyte materials and compositions for electrochemical supercapacitors', Chem. Soc. Rev., 44(21), 7484-7539 (2015).   DOI
34 R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS Appl. Mater. Interfaces, 9(49), 42797-42805 (2017).   DOI