1 |
J. P. C. Trigueiro, R. L. Lavall, and G. G. Silva, 'Supercapacitors based on modified graphene electrodes with poly (ionic liquid)', Journal of Power Sources, 256, 264-273 (2014).
DOI
|
2 |
T. Fan, W. Zeng, Q. Niu, S. Tong, K. Cai, Y. Liu, W. Huang, Y. Min, and A. J. Epstein, 'Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor', Nanoscale Res Lett, 10(1), 192 (2015).
DOI
|
3 |
Z. Niu, L. Zhang, L. Liu, B. Zhu, H. Dong, and X. Chen, 'All-solid-state flexible ultrathin micro-supercapacitors based on graphene', Advanced Materials, 25(29), 4035-4042 (2013).
DOI
|
4 |
D. Wang, Y. Min, Y. Yu, and B. Peng, 'A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors', Journal of colloid and interface science, 417, 270-277 (2014).
DOI
|
5 |
K. Gao, Z. Shao, X. Wu, X. Wang, Y. Zhang, W. Wang, and F. Wang, 'Paper-based transparent flexible thin film supercapacitors', Nanoscale, 5(12), 5307-5311 (2013).
DOI
|
6 |
W. W. Liu, Y. Q. Feng, X. B. Yan, J. T. Chen, and Q. J. Xue, 'Superior micro-supercapacitors based on graphene quantum dots', Advanced Functional Materials, 23(33), 4111-4122 (2013).
DOI
|
7 |
B. Paulchamy, G. Arthi, and B. D. Lignesh, 'A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial', J Nanomed Nanotechnol, 6(1), 253 (2015).
|
8 |
D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, 'Improved synthesis of graphene oxide', ACS nano, 4(8), 4806-4814 (2010).
DOI
|
9 |
Z. S. Wu, K. Parvez, X. Feng, and K. Mullen, 'Graphene-based in-plane micro-supercapacitors with high power and energy densities', Nature communications, 4(1), 1-8 (2013).
|
10 |
M. Wang, L. D. Duong, N. T. Mai, S. Kim, Y. Kim, H. Seo, Y. C. Kim, W. Jang, Y. Lee, J. Suhr, and J. D. Nam, 'All-solid-state reduced graphene oxide supercapacitor with large volumetric capacitance and ultralong stability prepared by electrophoretic deposition method', ACS Appl. Mater. Interfaces, 7(2), 1348-1354 (2015).
DOI
|
11 |
A Daraghmeh, S. Hussain, I. Saadeddin, L. Servera, E. Xuriguera, A. Cornet, & A. Cirera, 'A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study', Nanoscale Research Letters, 12(1), 639 (2017).
DOI
|
12 |
Q. Abbas, D. Pajak, E. Frackowiak, and F. Beguin, 'Effect of binder on the performance of carbon/carbon symmetric capacitors in salt aqueous electrolyte', Electrochimica Acta, 140, 132-138 (2014).
DOI
|
13 |
A. Bello, F. Barzegar, M. J. Madito, D. Y. Momodu, A. A. Khaleed, T. M. Masikhwa, J. K. Dangbegnon, and N. Manyala, 'Electrochemical performance of polypyrrole derived porous activated carbon-based symmetric supercapacitors in various electrolytes', RSC advances, 6(72), 68141-68149 (2017).
DOI
|
14 |
Kuldeep Rana; K. Naga Mahesh; J. H. Ahn; Vinay Pratap Singh, 'Synthesis of additive free electrode material of supercapacitor for energy storage applications' pp.448, 11th International Conference on Industrial and Information Systems (ICIIS), (2016).
|
15 |
C. X. Guo, and C. M. Li, 'A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance', Energy Environ. Sci., 4(11), 4504-4507 (2011).
DOI
|
16 |
S. Sathyamoorthi, S. Tubtimkuna, and M. Sawangphruk, 'Influence of structures and functional groups of carbon on working potentials of supercapacitors in neutral aqueous electrolyte: In situ differential electrochemical mass spectrometry', Journal of Energy Storage, 29, 101379, (2020).
DOI
|
17 |
B. E. Conway, 'Electrochemical supercapacitors: scientific fundamentals and technological applications', Springer Science & Business Media (2013).
|
18 |
Y. Liu, X. Miao, J. Fang, X. Zhang, S. Chen, W. Li, W. Feng, Y. Chen, W. Wang, and Y. Zhang, 'Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor', ACS Appl. Mater. Interfaces, 8(8), 5251-5260 (2016).
DOI
|
19 |
J. Zhu, T. Feng, X. Du, J. Wang, J. Hu, and L. Wei, 'High performance asymmetric supercapacitor based on polypyrrole/graphene composite and its derived nitrogen-doped carbon nano-sheets', Journal of Power Sources, 346, 120-127 (2017).
DOI
|
20 |
P. Simon, and Y. Gogotsi. 'Materials for electrochemical capacitors', Nature Materials, 7(11), 845-854 (2008).
DOI
|
21 |
W. Ma, S. Chen, S. Yang, W. Chen, W. Weng, Y. Cheng, and M. Zhu, 'Flexible all-solid-state asymmetric supercapacitor based on transition metal oxide nanorods/reduced graphene oxide hybrid fibers with high energy density', Carbon, 113, 151-158 (2017).
DOI
|
22 |
H. Zanin, E. Saito, H. J. Ceragioli, V. Baranauskas, and E. J. Corat, 'Reduced graphene oxide and vertically aligned carbon nanotubes superhydrophilic films for supercapacitors devices', Materials Research Bulletin, 49, 487-493 (2014).
DOI
|
23 |
X. Yang, H. Niu, H. Jiang, Q. Wang, and F. Qu, 'A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes', J. Mater. Chem. A, 4(29), 11264-11275 (2016).
DOI
|
24 |
Wang, H. Zhang, and C. Cheng, 'Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor', Chemical Engineering Journal, 308, 1165-1173 (2017).
DOI
|
25 |
K. Rana, S. D. Kim, and J. H. Ahn, 'Additive-free thick graphene film as an anode material for flexible lithium-ion batteries' Nanoscale, 7, 7065-7071 (2015).
DOI
|
26 |
J. L. Shi, W. C. Du, Y. X. Yin, Y. G. Guo, and L. J. Wan, 'Hydrothermal reduction of three-dimensional graphene oxide for binder-free flexible supercapacitors', J. Mater. Chem. A, 2(28), 10830-10834 (2014).
DOI
|
27 |
D. Sun, X. Yan, J. Lang, and Q. Xue, 'High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper', Journal of Power Sources, 222, 52-58 (2013).
DOI
|
28 |
Y. Liang, Z. Wang, J. Huang, H. Cheng, F. Zhao, Y. Hu, L. Jiang, and L. Qu, 'Series of in-fiber graphene supercapacitors for flexible wearable devices', J. Mater. Chem. A, 3(6), 2547-2551 (2015).
DOI
|
29 |
F. T. Johra, and W. G. Jung, 'Hydrothermally reduced graphene oxide as a supercapacitor', Applied Surface Science, 357, 1911-1914 (2015).
DOI
|
30 |
P. Bandyopadhyay, T. Kuila, J. Balamurugan, T. T. Nguyen, N. H. Kim, and J. H. Lee, 'Facile synthesis of novel sulfonated polyaniline functionalized graphene using m-aminobenzene sulfonic acid for asymmetric supercapacitor application', Chemical Engineering Journal, 308, 1174-1184 (2017).
DOI
|
31 |
R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS applied materials & interfaces, 9(49), 42797-42805 (2017).
DOI
|
32 |
S. Park, J. An, J. R. Potts, A. Velamakanni, S. Murali, and R. S. Ruoff, 'Hydrazine-reduction of graphite-and graphene oxide', Carbon, 49(9), 3019-3023 (2011).
DOI
|
33 |
C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, and J. Zhang, 'A review of electrolyte materials and compositions for electrochemical supercapacitors', Chem. Soc. Rev., 44(21), 7484-7539 (2015).
DOI
|
34 |
R. Shao, J. Niu, J. Liang, M. Liu, Z. Zhang, M. Dou, Y. Huang, and F. Wang, 'Mesopore-and macropore-dominant nitrogen-doped hierarchically porous carbons for high-energy and ultrafast supercapacitors in non-aqueous electrolytes', ACS Appl. Mater. Interfaces, 9(49), 42797-42805 (2017).
DOI
|