Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.4.93

Stretchable Current Collector Composing of DMSO-dopped Nano PEDOT:PSS Fibers for Stretchable Li-ion Batteries  

Kwon, O. Hyeon (Department of Energy Convergence Engineering, Cheongju University)
Lee, Ji Hye (Department of Energy Convergence Engineering, Cheongju University)
Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.4, 2021 , pp. 93-99 More about this Journal
Abstract
In order to decrease the weight of stretchable energy storage devices, interest in developing lightweight materials to replace metal current collectors is increasing. In this study, nanofibers prepared by electrospinning a conductive polymer, PEDOT:PSS, were used as current collectors for lithium ion batteries. The nanofiber showed improved electrical conductivity by using DMSO, a dopant, and indicated a stretch rate of 30% or more from the elasticity evaluation result. In addition, the use of the nanofiber current collector facilitates penetration of the liquid electrolyte and exhibits the effect of increasing the electronic conductivity through the nanofiber network. The lithium-ion battery using the DMSO-doped PEDOT:PSS@PAM nanofiber current collector indicated a high discharge capacity of 135mAh g-1, and indicated a high capacity retention rate of 73.5% after 1000 cycles. Thus, the excellent electrochemical stability and mechanical properties of conductive nanofibers showed that they can be used as lightweight current collectors for stretchable energy storage devices.
Keywords
PEDOT:PSS; DMSO; Stretchable batteries; Lithium-ion batterie;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Liu, J. Chen, Z. Chen, K. Liu, G. Zhou, Y. Sun, M. S. Song, Z. Bao and Y. Cui, 'Stretchable Lithium-Ion Batteries Enabled by Device-Scaled Wavy Structure and Elastic-Sticky Separator'. Adv. Energy Mater., 7, 1701076. (2017).   DOI
2 S. Ding, J. Jiu, Y. Gao, Y. Tian, T. Araki, T. Sugahara, S. Nagao, M. Nogi, H. Koga and K. Suganuma, 'One-step fabrication of stretchable copper nanowire conductors by a fast photonic sintering technique and its application in wearable devices'. ACS Appl. Mater. Interfaces., 8, 6190 (2016).   DOI
3 H.-H. Chou, A. Nguyen, A. Chortos, J. W. To, C. Lu, J. Mei, T. Kurosawa, W.-G. Bae, J. B.-H. Tok and Z. Bao, 'A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing'. Nat. Commun., 6, 1 (2015).
4 S. Choi, H. Lee, R. Ghaffari, T. Hyeon and D. H. Kim, 'Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials'. Adv. Mater., 28, 4203 (2016).   DOI
5 Y.-I. Jang, N. J. Dudney, T. N. Tiegs and J. W. Klett, 'Evaluation of the electrochemical stability of graphite foams as current collectors for lead acid batteries'. J. Power Sources., 161, 1392 (2006).   DOI
6 T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba and K. Hata, 'A stretchable carbon nanotube strain sensor for human-motion detection'. Nat. Nanotechnol., 6, 296 (2011).   DOI
7 Z. Xu, L. M. Chen, G. Yang, C. H. Huang, J. Hou, Y. Wu, G. Li, C. S. Hsu and Y. Yang, 'Vertical phase separation in Poly (3-hexylthiophene): fullerene derivative blends and its advantage for inverted structure solar cells'. Adv. Funct. Mater., 19, 1227 (2009).   DOI
8 H. Shi, C. Liu, Q. Jiang and J. Xu, 'Effective approaches to improve the electrical conductivity of PEDOT: PSS: a review'. Adv. Electron. Mater., 1, 1500017 (2015).   DOI
9 Y.-L. Zheng, X.-R. Ding, C. C. Y. Poon, B. P. L. Lo, H. Zhang, X.-L. Zhou, G.-Z. Yang, N. Zhao and Y.-T. Zhang, 'Unobtrusive sensing and wearable devices for health informatics'. IEEE. Trans. Biomed. Eng., 61, 1538 (2014).   DOI
10 A. M. Nardes, M. Kemerink, R. A. Janssen, J. A. Bastiaansen, N. M. Kiggen, B. M. Langeveld, A. J. Van Breemen and M. M. De Kok, 'Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films'. Adv. Mater., 19, 1196 (2007).   DOI
11 D. J. Lipomi, J. A. Lee, M. Vosgueritchian, B. C.-K. Tee, J. A. Bolander and Z. Bao, 'Electronic properties of transparent conductive films of PEDOT: PSS on stretchable substrates'. Chem. Mater., 24, 373 (2012).   DOI
12 S. J. Benight, C. Wang, J. B. Tok and Z. Bao, 'Stretchable and self-healing polymers and devices for electronic skin'. Prog. Polym. Sci., 38, 1961 (2013).   DOI
13 D.-H. Kim, N. Lu, R. Ghaffari and J. A. Rogers, 'Inorganic semiconductor nanomaterials for flexible and stretchable bio-integrated electronics'. NPG Asia Mater., 4, e15 (2012).   DOI
14 K. Wang, S. Luo, Y. Wu, X. He, F. Zhao, J. Wang, K. Jiang and S. Fan, 'Super-aligned carbon nanotube films as current collectors for lightweight and flexible lithium ion batteries'. Adv. Funct. Mater., 23, 846 (2013).   DOI
15 Y. Sun, W. M. Choi, H. Jiang, Y. Y. Huang and J. A. Rogers, 'Controlled buckling of semiconductor nanoribbons for stretchable electronics'. Nat. Nanotechnol., 1, 201 (2006).   DOI
16 S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J. A. Fan, Y. Su, J. Su and H. Zhang, 'Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems'. Nat. Commun., 4, 1 (2013).
17 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. H. Hong, 'Large-scale pattern growth of graphene films for stretchable transparent electrodes'. Nature., 457, 706 (2009).   DOI
18 S. Kirchmeyer and K. Reuter, 'Scientific importance, properties and growing applications of poly (3, 4-ethylenedioxythiophene)'. J. Mater. Chem., 15, 2077 (2005).   DOI
19 J. Ouyang, Displays, '"Secondary doping" methods to significantly enhance the conductivity of PEDOT: PSS for its application as transparent electrode of optoelectronic devices'. Displays., 34, 423 (2013).   DOI
20 G. Zhou, F. Li and H.-M. Cheng, 'Progress in flexible lithium batteries and future prospects'. Energy Environ. Sci., 7, 1307 (2014).   DOI
21 T. S. Hansen, K. West, O. Hassager and N. B. Larsen, 'Highly stretchable and conductive polymer material made from poly (3, 4-ethylenedioxythiophene) and polyurethane elastomers'. Adv. Funct. Mater., 17, 3069 (2007).   DOI
22 A. M. Nardes, M. Kemerink, M. De Kok, E. Vinken, K. Maturova and R. Janssen, 'Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol'. Org. Electron., 9, 727 (2008).   DOI
23 M. Vosgueritchian, D. J. Lipomi and Z. Bao, 'Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes'. Adv. Funct. Mater., 22, 421 (2012).   DOI
24 J. Luo, D. Billep, T. Waechtler, T. Otto, M. Toader, O. Gordan, E. Sheremet, J. Martin, M. Hietschold and D. R. Zahn, 'Enhancement of the thermoelectric properties of PEDOT: PSS thin films by post-treatment'. J. Mater. Chem. A., 1, 7576 (2013).   DOI
25 X. Du, Z. Zhang, W. Liu and Y. Deng, 'Nanocellulose-based conductive materials and their emerging applications in energy devices-A review'. Nano Energy., 35, 299 (2017).   DOI