Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.4.113

Preparation of V3.5+ Electrolyte for Vanadium Redox Flow Batteries using Carbon Supported Pt Dendrites Catalyst  

Lee, Hojin (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Hansung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.4, 2021 , pp. 113-119 More about this Journal
Abstract
In this study, impurity free V3.5+ electrolytes were prepared using formic acid as a reducing agent and PtD/C as a catalyst and it was applied to VRFB. The well-oriented 3D dendrite structure of the PtD/C catalyst showed high catalytic activity in formic acid oxidation reaction and vanadium reduction reaction. As a result, the conversion ratio of electrolyte using the PtD/C was 2.73 mol g-1 h-1, which was higher than that of 1.67 mol g-1 h-1 of Pt/C prepared by the polyol method. In addition, in the VRFB charging and discharging experiment, the V3.5+ electrolyte produced by the catalytic reaction showed the same performance as the standard V3.5+ electrolyte prepared by the electrolytic method, thus proving that it can be used as an electrolyte for VRFB.
Keywords
Vanadium redox flow battery; Platinum dendrite; Formic acid; Vanadium electrolyte; Catalytic reduction method;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Dunn, H. Kamath, and J-M. Tarascon, 'Electrical Energy Storage for the Grid: A Battery of Choices', Science, 334, 928 (2011).   DOI
2 J. E. Halls, A. Hawthornthwaite, R. J. Hepworth, N. A. Roberts, K. J. Wright, Y. Zhou, S. J. Haswell, S. K. Haywood, S. M. Kelly, N. S. Lawrencec, and J. D. Wadhawan, 'Empowering the smart grid: can redox batteries be matched to renewable energy systems for energy storage?', Energy Environ. Sci., 6, 1026 (2013).   DOI
3 L. Li, S. Kim, W. Wang, M. Vijayakumar, Z. Nie, B. Chen, J. Zhang, G. Xia, J. Hu, G. Graff, J. Liu, and Z. Yang, 'A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage', Adv. Energy Mater., 1, 394 (2011).   DOI
4 M. Rychcik, and M. Skyllas-Kazacos, 'Characteristics of a New All-Vanadium Redox Flow Battery', Journal of Power Sources, 22, 59 (1988).   DOI
5 C. Minke, U. Kunz, and T. Turek, 'Techno-economic assessment of novel vanadium redox flow batteries with large-area cells', Journal of Power Sources, 361,105 (2017).   DOI
6 W. N. Li, R. Zaffou, C. Shovlin, M. Perry, and Y. She, 'Vanadium Redox-Flow-Battery Electrolyte Preparation with Reducing Agents', ECS Transactions, 53, 93 (2013).
7 M. Skyllas-Kazacos, L. Cao, M. Kazacos, N. Kausar, and A. 'Mousa, Vanadium Electrolyte Studies for the Vanadium Redox Battery-A Review', ChemSusChem, 9, 1521 (2016).   DOI
8 W. Wang, Q. Luo, B. Li, W. Wei, L. Li, and Z. Yang, 'Recent Progress in Redox Flow Battery Research and Development', Advanced Functional Material, 23, 970 (2013).   DOI
9 Q. Kang, Y. Zhang, and S. Bao, 'Cleaning method of vanadium precipitation from stripped vanadium solution using oxalic acid', Powder Technology, 355, 667 (2019).   DOI
10 J. Heo, J-Y. Han, S. Kim, S. Yuk, C. Choi, R. Kim, J-H. Lee, A. Klassen, S-K. Ryi, and H-T. Kim, 'Catalytic production of impurity-free V3.5+ electrolyte for vanadium redox flow batteries', Nature Communications, 10, 4412 (2019).   DOI
11 W. H. Lee, and H. Kim, 'Oxidized iridium nanodendrites as catalysts for oxygen evolution reactions', Catalysis Communications, 12, 408 (2011).   DOI
12 C. Koroneos, T. Spachos, and N. Moussiopoulos, 'Exergy analysis of renewable energy sources', Renewable Energy, 28, 295 (2003).   DOI
13 S. Park, H. Lee, H. J. Lee, and H. Kim, 'New hybrid redox flow battery with high energy density using V-Mn/V-Mn multiple redox couples', Journal of Power Sources, 451, 227746 (2020).   DOI
14 G. Kear, A. A. Shah, and F. C. Walsh, 'Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects', Int. J. Energy Res., 36, 1105 (2012).   DOI
15 M. Dassisti , G. Cozzolino , M. Chimienti , A. Rizzuti , P. Mastrorilli, and P. L'Abbate, 'Sustainability of vanadium redox-flow batteries: Benchmarking electrolyte synthesis procedures', International Journal of Hydrogen Storage, 41, I6477 (2016).
16 L. Cao, M. Skyllas-Kazacos, C. Menictas, and J. Noack, 'A review of electrolyte additives and impurities in vanadium redox flow batteries', Journal of Energy Chemistry, 27, 1269 (2018).   DOI
17 X. Zhu, L. Huang, M. Wei, P. Tsiakaras and P. K. Shen, 'Highly stable Pt-Co nanodendrite in nanoframe with Pt skin structured catalyst for oxygen reduction electrocatalysis', Applied Catalysis B: Environmental, 281, 119460, (2021)   DOI
18 W. H. Lee, and H. Kim, 'Electrocatalytic activity and durability study of carbon supported Pt nanodendrites in polymer electrolyte membrane fuel cells', International Journal of Hydrogen Storage, 38, 7126 (2013).   DOI
19 H-S. Oh, J-G. Oh, and H.Kim, 'Modification of polyol process for synthesis of highly platinum loaded platinum-carbon catalysts for fuel cells', Journal of Power Sources, 183, 600 (2008).   DOI
20 C. Choi, S. Kim, R. Kim, Y. Choi, S. Kim, H-Y. Jung, J. H. Yang, and H-T. Kim, 'A review of vanadium electrolytes for vanadium redox flow batteries', Renewable and Sustainable Energy Reviews, 69, 263 (2017).   DOI
21 W. H. Lee, C. Lim, E. Ban, S. Bae, J. Ko, H-S. Lee, B. K. Min, K-Y. Lee, J. S. Yu, and H-S. Oh, 'W@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system', Applied Catalysis B: Environmental, 297, 120427, (2021)   DOI