Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.4.100

Electrochemical Performance of Rechargeable Lithium Battery Using Hybrid Solid Electrolyte  

Han, Jong Su (Department of Energy Convergence Engineering, Cheongju University)
Yu, Hakgyoon (Department of Energy Convergence Engineering, Cheongju University)
Kim, Jae-Kwang (Department of Energy Convergence Engineering, Cheongju University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.4, 2021 , pp. 100-105 More about this Journal
Abstract
Recently, all-solid-state batteries have attracted much attention to improve safety of rechargeable lithium batteries, but the solid-state batteries of conductive ceramics or solid polymer electrolytes show poor electrochemical properties because of several problems such as high interfacial resistance and undesired reactions. To solve the problems of the reported all-solid-state batteries, a hybrid solid electrolyte is suggested, in this study, NASICON-type nanoparticle Li1.5Al0.5Ti1.5P3O12 (LATP) conductive ceramic, PVdF-HFP, and a carbonate-based liquid electrolyte were composited to prepare a quasi-solid electrolyte. The hybrid solid electrolyte has a high voltage stability of 5.6 V and shows an suppress effect of lithium dendrite growth in the stripping-plating test. The LiNi0.83Co0.11Mn0.06O2 (NCM811)-based battery with the hybrid solid electrolyte exhibits a high discharge capacity of 241.5 mAh/g at a high charge-cut-off voltage of 4.8V and stable electrochemical reaction. The NCM811-based battery also shows 139.4 mAh/g discharge capacity without short circuit or explosion at 90℃. Therefore, the LATP-based hybrid solid electrolyte can be an effective solution to improve the safety and electrochemical properties of rechargeable lithium batteries.
Keywords
Hybrid solid electrolyte; Safety; Voltage stability; Lithium dendrite; Electrochemical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Chen, G.-T. Kim, J.-K. Kim, M. Zarrabeitia, M. Kuenzel, H.-P. Liang, D. Geiger, U. Kaiser, and S. Passerini, 'Highly Stable Quasi-Solid-State Lithium Metal Batteries: Reinforced Li1.3Al0.3Ti1.7(PO4)3/Li Interface by a Protection Interlayer' Adv. Energy Mater., 2101339 (2021).
2 H. Yu, J. S. Han, G. C. Hwang, J. S. Cho, D.-W. Kang, and J.-K. Kim, 'Optimization of High Potential Cathode Materials and Lithium Conducting Hybrid Solid Electrolyte for High-Voltage All-Solid-State Batteries' Electrochim. Acta, 365, 137349 (2021).   DOI
3 S. Wang, Y. Ding, G. Zhou, G. Yu, and A. Manthiram, 'Durability of the Li1+xTi2-xAlx(PO4)3 Solid Electrolyte in Lithium-Sulfur Batteries' ACS Energy Lett., 1, 1080-1085 (2016).   DOI
4 X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, 'Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review' Chem. Rev., 117, 10403-10473 (2017).   DOI
5 F. Wu, S. Fang, M. Kuenzel, A. Mullaliu, J.-K. Kim, X. Gao, T. Diemant, G.-T. Kim, and S. Passerini, 'Dual-anion Ionic Liquid Electrolyte Enables Stable Ni-rich Cathodes in Lithium-Metal Batteries' Joule, 5, 1-18, (2021).   DOI
6 H. Byeon, B. Gu, H.-J. Kim, J. H. Lee, I. Seo, J. Kim, J. W. Yang, and J.-K. Kim, 'Redox Chemistry of Nitrogen-doped CNT-Encapsulated Nitroxide Radical Polymers for High Energy Density and Rate-Capability Organic Batteries' Chemical Engineering J., 413, 127402 (2021).   DOI
7 Y. Zheng, Y. Yao, J. Ou, M. Li, D. Luo, H. Dou, Z. Li, K. Amine, A. Yu and Z. Chen, 'A Review of Composite Solid-State Electrolytes for Lithium Batteries: Fundamentals, Key Materials and Advanced Structures' Chem. Soc. Rev., 49, 8790-8839 (2020).   DOI
8 Z. Chen, D. Steinle, H.-D. Nguyen, J.-K. Kim, A. Mayer, J. Shi, E. Paillard, C. Iojoiu, S. Passerini, and D. Bresser, 'High-Energy Lithium Batteries based on Single-Ion Conducting Polymer Electrolytes and Li[Ni0.8Co0.1Mn0.1]O2 Cathodes' Nano Energy, 77, 105129 (2020).   DOI
9 Y.-K. Sun, 'Promising All-Solid-State Batteries for Future Electric Vehicles' ACS Energy Lett., 5, 3221-3223 (2020).   DOI
10 J.-K. Kim, Y. J. Lim, H. Kim, G.-B. Cho, and Y. Kim,'A Hybrid Solid Electrolyte for Flexible Solid-State Sodium Batteries' Energy Environ. Sci., 8, 3589-3596 (2015).   DOI
11 F. Wu, J. Maier and Y. Yu, 'Guidelines and Trends for Next-Generation Rechargeable Lithium and Lithium-ion Batteries' Chem. Soc. Rev., 49, 1569-1614 (2020).   DOI
12 J. S. Han, G. C. Hwang, H. Yu, D.-H. Lim, J. S. Cho, M. Kuenzel, Jae-Kwang Kim, and J.-H. Ahn, 'Preparation of Fully Flexible Lithium Metal Batteries with Free-Standing β-Na0.33V2O5 Cathodes and LAGP Hybrid Solid Electrolytes, J. Industrial and Engineering Chem., 94, 368-375 (2021).   DOI
13 M.-J. Kim, J.-W. Park, B. G. Kim, Y.-J. Lee, Y.-C. Ha, S.-M. Lee and K.-J. Baeg,'Facile Fabrication of Solution-Processed Solid-Electrolytes for High-Energy-Density All-Solid-State-Batteries by Enhanced Interfacial Contact' Scientific Reports, 10, 11923 (2020).   DOI
14 O. H. Kwon, J. B. Kim and J.-K. Kim, 'Improving the Electrochemical Properties of Lithium Terephthalate-based Lithium-Organic Battery with A Graphite Coated Current Collector' J. Korean Electrochem. Soc., 22, 121-127 (2019).
15 J. Kim, J. Oh, J. Y. Kim, Y.-G. Lee, and K. M. Kim, 'Recent Progress and Perspectives of Solid Electrolytes for Lithium Rechargeable Batteries' J. Korean Electrochem. Soc., 22, 87-103 (2019).   DOI