Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.3.52

Effect of Fe and BO3 Substitution in Li1+xFexTi2-x(PO4)3-y(BO3)y Glass Electrolytes  

Choi, Byung-Hyun (Department of Materials Science and Engineering, Inha University)
Jun, Hyung Tak (Department of Materials Science and Engineering, Inha University)
Yi, Eun Jeong (Department of Materials Science and Engineering, Inha University)
Hwang, Haejin (Department of Materials Science and Engineering, Inha University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.3, 2021 , pp. 52-64 More about this Journal
Abstract
The effect of Fe and BO3 doping on structure, thermal, and electrical properties of Li1+xFexTi2-x(PO4)3-y(BO3)y (x = 0.2, 0.5)-based glass and glass ceramics was investigated. In addition, their crystallization behavior during sintering and ionic conductivity were also investigated in terms of sintering temperature. FT-IR and XPS results indicated that Fe2+ and Fe3+ ions in Li1+xFexTi2-x(PO4)3-y(BO3)y glass worked as a network modifier (FeO6 octahedra) and also as a network former (FeO4 tetrahedra). In the case of the glass with low substitution of BO3, boron formed (PB)O4 network structure, while boron preferred BO3 triangles or B3O3 boroxol rings with increasing the BO3 content owing to boic oxide anomaly, which can result in an increased non-bridging oxygen. The glass transition temperature (GTT) and crystallization temperature (CT) was lowered as the BO3 substitution was increased, while Fe2+ lowered the GTT and raised the CT. The ionic conductivity of Li1+xFexTi2-x(PO4)3-y(BO3)y glass ceramics were 8.85×10-4 and 1.38×10-4S/cm for x = 0.2 and 0.5, respectively. The oxidation state of doped Fe and boric oxide anomaly were due to the enhanced lithium ion conductivity of glass ceramics.
Keywords
All-solid-state batteries; solid electrolytes; glass ceramics; lithium ion conductivity; borophosphate glass;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Aono, E. Sugimoto, Y. Sadaoka, N. lmanaka, and G. Adachi, Ionic Conductivity of the Lithium Titanium Phosphate (Li1+x MxTi2-x(PO4)3 M=Al, Sc, Y, and La) Systems, J. Electrochem. Soc., 136, 590 (1989).   DOI
2 J. Fu, Fast Li+ Ion Conduction in Li2O-A12O3-TiO2-SiO2-P2O5 Glass-Ceramics, J. Am Ceram. Soc., 80, 1901 (1997).   DOI
3 K. Takahashi, J. Ohmura, D. Im, D. J. Lee, T. Zhang, N. Imanishi, A. Hirano, M. B. Phillipps, Y. Takeda, and O. Yamamoto, A Super High Lithium Ion Conducting Solid Electrolyte of Grain Boundary Modified Li1.4Ti1.6Al0.4(PO4)3, J. Electrochem. Soc., 159, A342-A348 (2012).
4 G. F. Ortiz, M. C. Lopez, P. Lavela, C. Vidal-Abarca, and J. L. Tirado, Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping, Solid State Ionics., 262, 573 (2014).   DOI
5 H. Aono, E. Sugimoto, Y. Sadaoka, N. lmanaka, and G. AdachiI, Ionic Conductivity of Solid Electrol ytes Based on Lithium Titanium Phosphate, J. Electrochem. Soc., 137, 1023 (1990).   DOI
6 H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic Conductivity of Li Ti2(PO4)3 Mixed with Lithium Salt, Jpn. Chem. Lett., 19, 331 (1990).   DOI
7 R. T. Croswell, A. Reisman, D. L. Simpson, D. Temple, and C. K. Williams, Differential Thermal Analysis of Glass Mixtures Containing SiO2, GeO2, B2O3, and P2O5, J. Electrochemical Soc., 146, 4569 (1999).   DOI
8 H. Chen, H. Tao, Q. Wu, and X. Zhao, Crystallization Kinetics of Superionic Conductive Al(B, La)-Incorporated LiTi2(PO4)3 Glass-Ceramics, J. Am. Ceram. Soc., 96, 801 (2013).   DOI
9 L. Armelao, D. Barreca, G. Bottaro, C. Canevali, F. Morazzoni, R. Scotti, and E. Tondello, Boron and Phosphorus Quantification in Sol-Gel BPSG Glasses by XPS, Surf. Sci. Spectra 10, 40, 39 (2003).
10 B.H. Kim, Glass technology, 청문각, 서울, 371 (1990).
11 K. H. Yoon, M. S. Kwak, and Y.-K. Lee, Structure and Electrical Properties of L2O-TiO2-P2O5 Glass, J. Kor. Ceram. Soc., 40, 178 (2003).   DOI
12 S. Machill, T. Shodai, Y. Sakurai, and J. Yamaki, Electrochemical and structural investigations of the reaction of lithium with tin-based composite oxide glasses, J. Solid State Electrochem., 3, 97 (1999).   DOI
13 K. Waetzig, C. Heubner, and M. Kusnezo, Reduced Sintering Temperatures of Li+ Conductive Li1.3Al0.3Ti1.7 (PO4)3 Ceramics, Crystals, 10, 408 (2020).   DOI
14 I. Abrahams, and E. Hadzifejzovic, Lithium ion conductivity and thermal behaviour of glasses and crystallised glasses in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ionics 134, 249 (2000).   DOI
15 S. Ohta, J. Seki, Y. Yagi, Y. Kihira, T. Tani, and T. Asaoka, Co-sinterable lithium garnet-type oxide electrolyte with cathode for all-solid-state lithium ion battery, J. Power Sources, 265, 10 (2014).
16 Y. Yoon, J. Kim, C. Park, and D. Shin, The relationship of structural and electrochemical properties of NASICON structure Li1.3Al0.3Ti1.7(PO4)3 electrolytes by a sol-gel method, J. Ceram. Processing Res., 14, 356 (2013).
17 Y. Kobayashi, T. Takeuchi, M. Tabuchi, K. Ado, and H. Kageyama, Densification of LiTi2(PO4)3-based solid electrolytes by spark-plasma-sintering, J. Power Sources, 81-82, 853 (1999).   DOI
18 E. A. Il'ina, A. A. Raskovalov, N. S. Saetova, B. D. Antonov, O. G. Reznitskikh, Composite electrolytes Li7La3Zr2O12-glassy Li2O-B2O3-SiO2, Solid State lonics, 26, 26 (2016).
19 N. J. Kim, S.-H. Im, D.-H. Kim, D.-K Yoon, and B.-K. Ryu, Structure and properties of borophosphate glasses, Electro. Mater. Letters, 6, 103-106 (2010).   DOI
20 Q. Liao, F. Wang, K. Chen, S. Pan, H. Zhu, M. Lu, and J. Qin, FTIR spectra and properties of iron borophosphate glasses containing simulated nuclear wastes, J. Molecular Structure, 1092, 187 (2015).   DOI
21 T. Q. Leow, P. M. Leong, T. Y. Eeu, Z. Ibramim, and R. Hussin, Study of Structural and Luminescence Properties of Lead Lithium Borophosphate Glass System Doped with Ti Ions, Sains Malaysiana, 43, 929 (2014).
22 C. Gautam, A. K. Kumar, and A. K. Singh, A Review on Infrared Spectroscopy of Borate Glasses with Effects of Different Additives, Inter. Scholarly Res. Network ISRN Ceram., 2012, 428497 (2012).
23 Y. M. Moustafa, K. E. Egili, H. Doweidar, and I. Abbas, Structure and electric conduction of Fe2O3-P2O5 glasses, Physica B, 353, 82 (2004).   DOI
24 H. Li, X. Liang, C. Wang, H. Yu, Z. Li, and S. Yang, Influence of rare earth addition on the thermal and structural stability of CaO-Fe2O3-P2O5 glasses, J. Molecular Structure, 1076, 592 (2014).   DOI
25 E. K. Abdel-Khalek, E. A. Mohamed, S. M. Salem, and I. Kashi, Structural and dielectric properties of (100-x)B2O3-(x/2)Bi2O3-(x/2)Fe2O3 glasses and glassceramic containing BiFeO3 phase, J. Non-crystalline solids, 492, 49 (2018).
26 H. Farouk, A. A. Solimani, S. A. Aly H.Z.E.-Deen, I. Kashif, and A. M. Sanad, Role of iron addition on structure and electrical and magnetic properties of lithium lead borate glasses, Mater. Sci. Eng. B, 38, 217 (1996).   DOI
27 S. Das, and A. Ghosh, Structure and electrical properties of vanadium boro-phosphate glasses, J. Non-Cryst. Solids, 458, 28 (2017).   DOI
28 B Lagowska, I. Waclawska, J. Sulowska, Z. Olejniczak, B. Sulikowski, and M. Szumera, Glass transition effect in liquation silicate-borate-phosphate glasses, J. Thermal Anal. Calorimetry, 138, 2251 (2019)   DOI
29 L. Zhang, R. K. Brow, M. E. Schlesinger, L. Ghussn, and E. D. Zanotto, Glass formation from iron-rich phosphate melts, J. Non-Crystalline Solids, 356, 1252 (2010).   DOI
30 A. Kishioka, Glass Formation in the Li2O-TiO2-P2O5, MgO-TiO2-P2O5 and CaO-TiO2-P2O5 Systems, Bull. Chem. Soc. Jpn., 51, 2559 (1978).   DOI
31 H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Electrical property and sinterability of LiTi2(PO4)3 mixed with lithium salt (Li3PO4 or Li3BO3), Solid State lonics, 47, 257 (1991).   DOI
32 S.-Y. Choi, Y.-S. Kim, J.-H. Kim, J.-Y. Jung, I.-G. Kim, H.-J. Park, J.-S. Bae, and B.-K. Ryu, Effects of Substituting B2O3 for P2O5 on the Structures and Properties of V2O5-P2O5 Glass Systems (II), Korean J. Met. Mater, 53, 195 (2015).
33 P. Goharian, A. R. Aghaei, B. E. Yekta, and S. Banijamali, Ionic conductivity and microstructural evaluation of Li2O-TiO2-P2O5-SiO2 glass-ceramics, Ceram. Inter. 41, 1757 (2015).   DOI
34 Z. Luo, C. Qin, Y. Wu, W. Xu, S. Zhang, and A. Lu, Structure and properties of Fe2O3-doped 50Li2O-10B2O3-40P2O5 glass and glass-ceramic electrolytes, Solid state Ionics, 345, 115177 (2020).   DOI
35 N. Machida, K. Fujii, and T. Minami, Preparation and ionic conductivity of rapidly quenched glass of system Li2O-TiO2-P2O5, Jpn. Chem. Lett., 21, 367 (1991).
36 R. Kahlaoui, K. Arbi, R. Jimenez, I. Sobrados, J. Sanz, and R. Ternane, Influence of preparation temperature on ionic conductivity of titanium-defective Li1+4xTi22x(PO4)3 NASICON-type materials, J Mater Sci., 55 8464 (2020).
37 R.-H. Shin, S. I. Son, Y. S. Han, Y. D. Kim, H.-T. Kim, and S.-S. Ryu, Sintering behavior of garnet-type Li7La3Zr2O12-Li3BO3 composite solid electrolytes for allsolid-state lithium batteries, Solid State Ionics, 301, 10 (2017).   DOI
38 J. Zhang, Z. Luo, Y. Zhang, C. Qin, H. Liang, and A. Lu, Controllable preparation and high ionic conductivity of Fe2O3-doped 46Li2O-4Al2O3-50P2O5 glass-ceramics, J. Non-Cryst. Solids, 500, 401 (2018).   DOI
39 E. Mohaghegh, A. Nemati, B. E. Yekta, and S. Banijamali, Effects of Fe203 content on ionic conductivity of Li2O-TiO2-P2O5 glasses and glass-ceramics, Mater. Chem. Phys., 190, 8 (2017).   DOI
40 P. Goharian, B. E. Yekta, A. R. Aghaei, and S. Banijamali. Lithium ion-conducting glass-ceramics in the system Li2O-TiO2-P2O5-Cr2O3-SiO2, J. Non-Crystalline Solids, 409, 120 (2015).   DOI
41 R. B. Nuernberg, and A. C. M. Rodrigues, A new NASICON lithium ion-conducting glass-ceramic of the Li1+xCrx(Gey,Ti1-y)2-x(PO4)3 System, Solid State Ionics, 301, 1 (2017).   DOI
42 T. Minami, A. Hayashi, and M. Tatsumisago, Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries, Solid State Ionics, 177, 2715 (2006).   DOI