Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.2.13

Technology Trends in Stainless Steel for Water Splitting Application  

Kim, Moonsu (Department of Chemistry and Chemical Engineering, Inha University)
Ha, Jaeyun (Department of Chemistry and Chemical Engineering, Inha University)
Kim, Yong-Tae (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.2, 2021 , pp. 13-27 More about this Journal
Abstract
Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting material, and current collector due to intrinsic properties of Ni and Fe contained in stainless steel. Therefore, in recent years, a lots of surface treatment methods have been studied to activate stainless steel, developing application of water splitting system. In this review paper, the research on the surface treatment technology of stainless steel for water splitting is summarized. It is expected to be able to propose the diverse surface treatment approaches of stainless steel for application to low-cost and highly efficient water splitting electrode.
Keywords
Stainless Steel; Surface Treatment; Electrocatalyst; Water Splitting;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. S. Sagu, K. G. U. Wijayantha, M. Bohm, S. Bohm, and T. K. Rout, 'Anodized Steel Electrodes for Supercapacitors' ACS Applied Materials and Interfaces, 8, 6277-6285 (2016).   DOI
2 M. Kim, J. Lee, K. Lee, Y. -T. Kim, and J. Choi, 'Preparation of Anodic Iron Oxide Composite Incorporated with WO3 on the Stainless Steel Type-304 Substrate Through a Single-step Anodization' Journal of Korean Industrial Surface Engineering, 53, 257-264 (2020).
3 J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, 'Technology Trends in Fabrication of Nanostructures of Metal Oxides by Anodization and Their Applications' Journal of Korean Industrial and Engineering Chemistry, 19, 249-258 (2008).
4 K. Kure, Y. Konno, E. Tsuji, P. Skeldon, G. E. Thompson, and H. Habazaki, 'Formation of self-organized nanoporous anodic films on Type 304 stainless steel' Electrochemistry Communications, 21, 1-4 (2012).   DOI
5 H. Habazaki, K. Shahzad, T. Hiraga, E. Tsuji, Y. Aoki, 'Formation of Self-Organized Porous Anodic Films on Iron and Stainless Steels' ECS Transactions, 69, 211-223 (2015).
6 Y. Wang, G. Li, K. Wang, and X. Chen, 'Fabrication and formation mechanisms of ultra-thick porous anodic oxides film with controllable morphology on type-304 stainless steel' Applied Surface Science, 505, 144497 (2020).   DOI
7 N. Armaroli, and V. Balzani, 'The Future of Energy Supply: Challenges and Opportunities' Angewante Chemie International Edition, 46, 52-66 (2007).   DOI
8 권용근, 조은애, '수전해 기술 동향 및 전망', 재료마당, 대한금속재료학회, 28, 4-12 (2015)
9 H. Schafer, and M. Chatenet, 'Steel: The Resurrection of a Forgotten Water-Splitting Catalyst' ACS Energy Letter, 3, 574-591 (2018).   DOI
10 D. Chen, R. Lu, Z. Pu, J. Zhu, H. -W. Li, F. Liu, S. Hu, X. Luo, J. Wu, Y. Zhao, and S. Mu, 'Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting' Applied Catalysis B - Environmental, 279, 119396 (2020).   DOI
11 S. Anantharaj, S. R. Ede, K. Sakthikumar, K. Karthick, S. Mishra, and S. Kundu, 'Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review' ACS Catalysts, 6, 4660-4672 (2016).   DOI
12 X. Rong, J. Parolin, and A. M. Kolpak, 'A Fundamental Relationship between Reaction Mechanism and Stability in Metal Oxide Catalysts for Oxygen Evolution' ACS Catalysts, 6, 1153-1158 (2016).   DOI
13 K. Honda, and A. Fujishima, 'Electrochemical Photolysis of Water at a Semiconductor Electrode' Nature, 238, 37-38 (1972).   DOI
14 W. Han, K. Kuepper, P. Hou, W. Akram, H. Eickmeier, J. Hardege, M. Steinhart, and H. Schafer, 'Free-Sustaining Three-Dimensional S235 Steel-Based Porous Electrocatalyst for Highly Efficient and Durable Oxygen Evolution' Chem. Sus. Chem., 11, 3661-3671 (2018).   DOI
15 T. Shinagawa, A. T. Garcia-Esparza, and K. Takanabe, 'Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion' Scientific Report, 5, 13801 (2015).   DOI
16 Y. -F. Li, and A. Selloni, 'Mechanism and Activity of Water Oxidation on Selected Surfaces of Pure and FeDoped NiOx' ACS Catalysts, 4, 1148-1153 (2014).   DOI
17 X. Zou, and Y. Zhang, 'Noble metal-free hydrogen evolution catalysts for water splitting' Chemical Society Review, 44, 5148-5180 (2015).   DOI
18 L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution reaction on Ferritic Stainless Steel Journal de Chimie Physique et de Physico-Chimie Biologique, 74, 529-532 (1977).   DOI
19 S. Anantharaj, S. Chatterjee, K. C. Swaathini, T. S. Amarnath, E. Subhashini, D. K. Pattanayak, and S. Kundu, 'Stainless Steel Scrubber: A Cost Efficient Catalytic Electrode for Full Water Splitting in Alkaline Medium' ACS Sustainable Chemistry and Engineering, 6, 2498-2509 (2018).   DOI
20 S. Anantharaj, H. Sugime, and S. Noda, 'Chemical Leaching of Inactive Cr and Subsequent Electrochemical Resurfacing of Catalytically Active Sites in Stainless Steel for High-Rate Alkaline Hydrogen Evolution Reaction' ACS Applied Energy Materials, 3, 12596-12606 (2020).   DOI
21 H. H. Farrag, A. A. Abbas, S. Y. Sayed, H. H. Alalawy, B. E. El-Anadouli, A. M. Mohammad, and N. K. Allam, 'From Rusting to Solar Power Plants: A Successful Nano-Pattering of Stainless Steel 316L for Visible Light-Induced Photoelectrocatalytic Water Splitting' ACS Sustainable Chemistry and Engineering, 6, 17352-17358 (2018).   DOI
22 H. Schafer, S. Sadaf, L. Walder, K. Kuepper, S. Dinklage, J. Wollschlager, L. Schneider, M. Steinhart, J. Hardege, and D. Daum, 'Stainless steel made to rust: a robust water-splitting catalyst with benchmark characteristics' Energy Environmental Science, 8, 2685- 2697 (2015).   DOI
23 M. Kim, Y.-T. Kim, and J. Choi, 'Controlled contribution of Ni and Cr cations to stainless steel 304 electrode: Effect of electrochemical oxidation on electrocatalytic properties' Electrochemistry Communications, 117, 106770 (2020).   DOI
24 B. Sarma, A. L. Jurovitzki, R. S. Ray, Y. R. Smith, S. K. Mohanty, and M. Misra, 'Electrochemical capacitance of iron oxide nanotube (Fe-NT): effect of annealing atmospheres' Nanotechnology, 26, 265401 (2015).   DOI
25 M. Kim, J. Ha, N. Shin, Y. -T. Kim, and J. Choi, 'Self-activated anodic nanoporous stainless steel electrocatalysts with high durability for the hydrogen evolution reaction' Electrochimica Acta, 364, 137315 (2020).   DOI
26 M. Kim, J. Lee, M. Je, B. Heo, H. Yoo, H. Choi, J. Choi, and K. Lee, 'Electric field-driven one-step formation of vertical p-n junction TiO2 nanotubes exhibiting strong photocatalytic hydrogen production' Journal of Materials Chemistry A, 9, 2239-2247 (2021).   DOI
27 J. Park, H. Yoo, and J. Choi, '3D ant-nest network of α-Fce2O3 on stainless steel for all-in-one anode for Li-ion battery' Journal of Power Sources, 431, 25-30 (2019).   DOI
28 M. Lee, M. S. Jee, S. Y. Lee, M. K. Cho, J. -P. Ahn, H. -S. Oh, W. Kim, Y. J. Hwang, and B. K. Min, 'Sloughing a Precursor Layer to Expose Active Stainless Steel Catalyst for Water Oxidation' ACS Applied Materials and Interfaces, 10, 24499-24507 (2018).   DOI
29 M. -S. Balogun, W. Qiu, Y. Huang, H. Y. Yang, R. Xu, W. Zhao, G. -R. Li, H. Ji, and Y. Tong, 'Cost-effective alkaline water electrolysis based on nitrogen- and phosphorus-doped self-supportive electrocatalysts' Advanced Materials, 29, 1702095 (2017).   DOI
30 B. C. M. Martindale, and E. Reisner, 'Bi-Functional irononly electrodes for efficient water splitting with enhanced stability through in situ electrochemical regeneration' Advanced Energy Materials, 6, 1502095 (2016).   DOI
31 S. K. Tiwari, A. K. L. Singh, and R. N. Singh, 'Studies on the electrocatalytic properties of some austenitic stainless steels for oxygen evolution in an alkaline medium' Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 319, 263-274 (1991).   DOI
32 L. P. Bicelli, C. Romagnani, and M. T. Rosania, 'Hydrogen Evolution Reaction on Martensitic Stainless Steel' Journal de Chimie Physique et de Physico-Chimie Biologique, 73, 783-786 (1976).   DOI
33 G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun, X. Zhuang, M. Chen, and X. Feng, 'Accelerated Hydrogen Evolution Kinetics on NiFe-Layered Double Hydroxide Electrocatalysts by Tailoring Water Dissociation Active Sites' Advanced Materials, 30, 1706279 (2018).   DOI
34 X. Liu, B. You, and Y. Sun, 'Facile Surface Modification of Ubiquitous Stainless Steel Led to Competent Electrocatalysts for Overall Water Splitting' ACS Sustainable Chemistry and Engineering, 5, 4778-4784 (2017).   DOI
35 K. Lee, A. Mazare, and P. Schmuki, 'One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes' Chemical Review, 114, 9385-9454 (2014).   DOI
36 W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, 'Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity' ACS Applied Materials and Interfaces, 2, 2385-2392 (2010).   DOI
37 L. Jiang, G. Zhou, J. Mi, and Z. Wu, 'Fabrication of visible-light-driven one-dimensional anatase TiO2/Ag heterojunction plasmonic photocatalyst' Catalysis Communication, 24, 48-51 (2012).   DOI
38 J. Creus, J. De Tovar, N. Romero, J. Gracia-Anton, K. Philippot, R. Bofill, and X. Sala, 'Ruthenium Nanoparticles for Catalytic Water Splitting' Chem. Sus. Chem., 12, 2493-2514 (2019).   DOI
39 K. Xie, M. Guo, H. Huang, and Y. Liu, 'Fabrication of iron oxide nanotube arrays by electrochemical anodization' Corrosion Science, 88, 66-75 (2014).   DOI
40 K. Lee, 'Principle of Anodic TiO2 Nanotube Formations' Applied Chemistry for Engineering, 28, 601-606 (2017).   DOI
41 A. Singh, S. L. Y. Chang, R. K. Hocking, U. Bach, and L. Spiccia, 'Highly active nickel oxide water oxidation catalysts deposited from molecular complexes' Energy and Environmental Science, 2, 579-586 (2013).
42 X. Gao, D. Chen, J. Qi, F. Li, Y. Song, W. Zhang, and R. Cao, 'NiFe Oxalate Nanomesh Array with Homogenous Doping of Fe for Electrocatalytic Water Oxidation' Small, 15, 1904579 (2019).   DOI
43 R. D. Smith, M. S. Prevot, R. D. Fagan, S. Trudel, and C. P. Berlinquette, 'Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel' Journal of American Chemical Society, 135, 11580-11586 (2013).   DOI
44 J. J. Fillol, Z. Codola, I. Garcia-Bosch, L. Gomez, J. J. Pla, and M. Costas, 'Efficient water oxidation catalysts based on readily available iron coordination complexes' Nature Chemistry, 3, 807-813 (2011).   DOI
45 Q. -Q. Chen, C. -C. Hou, C. -J. Wang, X. Yang, R. Shi, and Y. Chen, 'Ir4+-Doped NiFe LDH to expedite hydrogen evolution kinetics as a Pt-like electrocatalyst for water splitting' Chemical Communication, 54, 6400-6403 (2018).   DOI
46 Y. Li, S. Guo, T. Jin, Y. Wang, F. Cheng, and L. Jiao, 'Promoted synergy in core-branch CoP@NiFe-OH nanohybrids for efficient electrochemical-/ photovoltage-driven overall water splitting' Nano Energy, 63, 103821 (2019).   DOI
47 M. Qu, Y. Jiang, M. Yang, S. Liu, Q. Guo, W. Shen, M. Li, and R. He, 'Regulating electron density of NiFe-P nanosheets electrocatalysts by a trifle of Ru for high-efficient overall water splitting' Applied Catalysis B - Environmental, 263, 118324 (2020).   DOI
48 V. Klimas, V. Pakstas, I. Vrublevsky, K. Chernyakova, and A. Jagminas, 'Fabrication and Characterization of Anodic Films onto the Type-304 Stainless Steel in Glycerol Electrolyte' Journal of Physical Chemistry C, 117, 20730-20737 (2013).   DOI
49 J. Li, P. Xu, R. Zhou, R. Li, L. Qiu, S. P. Jiang, and D. Yuan, 'Co9S8-Ni3S2 heterointerfaced nanotubes on Ni foam as highly efficient and flexible bifunctional electrodes for water splitting' Electrochimica Acta, 299, 152-162 (2019).   DOI
50 H. Asoh, M. Nakatani, and S. Ono, 'Fabrication of thick nanoporous oxide films on stainless steel via DC anodization and subsequent biofunctionalization' Surface and Coatings Technology, 307, 441-451 (2016).   DOI
51 J. Lee, H. -K. Choi, M. G. Kim, Y. S. Lee, and K. Lee, 'Formation of porous oxide layer on stainless steel by anodization in hot glycerol electrolyte' Applied Chemistry for Engineering, 31, 215-219 (2020).
52 H. Yoo, Y. -W. Choi, and J. Choi, 'TiO2 nanotubes with a doping of ruthenium oxide by single-step anodization for water oxidation applications' ChemCatChem, 7, 643-647 (2015).   DOI
53 H. Yoo, K. Oh, Y. R. Lee, K. H. Row, G. Lee, and J. Choi, 'Simultaneous co-doping of RuO2 and IrO2 into anodic TiO2 nanotubes: A binary catalyst for electrochemical water splitting' International Journal of Hydrogen Energy, 42, 6657-6664 (2017).   DOI