Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.1.7

Formation of Anodic Al Oxide Nanofibers on Al3104 Alloy Substrate in Pyrophosphoric Acid  

Kim, Taewan (Department of Advanced Science and Technology Convergence, Kyungpook National University)
Lee, Kiyoung (Department of Advanced Science and Technology Convergence, Kyungpook National University)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.1, 2021 , pp. 7-12 More about this Journal
Abstract
In this study, we investigated the formation of the metal oxide nanostructure by anodization of aluminum 3104H18 alloy. The anodization was performed in pyrophosphoric acid (H4P2O7) electrolyte. By the control of anodization condition such as concentration of electrolyte, anodization temperature and applied voltage, nanoporous or nanofiber structures were obtained. The optimal anodization condition to form nanofiber structures are 75 wt% of H4P2O7 at 30 V and 20℃. When anodization was performed at over 40 V, nanoporous structures were formed due to accelerated dissolution reaction rate of nanofiber structures or increasing thickness of channel wall.
Keywords
Anodization; Nanostructures; Metal Oxide; $Al_2O_3$; Nanofiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. Lee, A. Mazare, and P. Schmuki, Chem. Rev., 2014, 114, 9385-9454.   DOI
2 V. Zwilling, M. Aucouturier, and E. Darque-Ceretti, Electrochim. Acta., 1999, 45, 921-929.   DOI
3 S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang, J. Phys. Chem. C., 2009, 113, 12759-12765.   DOI
4 J. M. Macak, H. Tsuchiya, and P. Schmuki, Angew. Chem. Int. Ed., 2005, 44, 2100- 2102.   DOI
5 A. Ghasemi, V. S. Raja, C. Blawert, W. Dietzel, and K. U. Kainer, Surf. Coat., 2008, 202, 3513-3518.   DOI
6 J. Lee, H. Choi, M. Kim, Y. Lee, and K. Lee, Appl. Chem. Eng., 2020, 31, 215-219.
7 L. Yisen, C. Yi, L. Zhiyuan, H. Xing, and Y. Li, Electrochem. Commun., 2011, 13, 1336-1339.   DOI
8 I. Chang, D. Jung, and J. Gook, J. Kor. Inst. Surf. Eng., 2012, 45, 198-205.   DOI
9 H. Masuda and K. Fukuda, Science., 1995, 268, 1466.   DOI
10 T. Kikuchi, D. Nakajima, O. Nishinaga, S. Natsui, and R. O. Suzuki, Curr. Nanosci., 2015, 11, 560-571.   DOI
11 H. Masuda, F. Hasegawa, and S. Ono, J. Electrochem. Soc., 1997, 144, L127.   DOI
12 K. Lee, Y. Yang, M. Yang, and P. Schmuki, Chem. Eur. J., 2012, 18, 9521-9524.   DOI
13 K. Lee, D. Kim, and P. Schmuki, Chem. Commun., 2011, 47, 5789-5791.   DOI
14 K. Lee and P. Schmuki, Electrochem. Commun., 2011, 13, 542-545.   DOI
15 S. Yang, Y. Aoki, P. Skeldon, and G. E. Thompson, J. Solid. State. Electrochem., 2011, 15, 689-696.   DOI
16 K. Lee, J. Kor. Inst. Surf. Eng., 2016, 6, 486-489.   DOI
17 M. Ozawa, J. Alloys. Compd., 2006, 408-412, 1090-1095.   DOI
18 M. Mardkhe, B. Huang, C. H. Bartholomew, T. M. Alam and B. F. Woodfield, J. Porous. Mater., 2016, 23, 475-487.   DOI
19 D. Han, X. Li, Y. Wang, Z. Yan, and S. Liu, Microporous. Mesoporous. Mater., 2012, 158, 1-6.   DOI
20 J. Lee, S. Jung, V. S. Kumbhar, S. Uhm, H. Kim, and K. Lee, Catal. Today., 2021, 359, 50-56.   DOI
21 T. Kikuchi, O. Nishinaga, D. Nakajima, J. Nakajima, S. Natsui, N. Sakaguchi, and R. O. Suzuki, Sci. Rep., 2014, 4, 7411.   DOI
22 S. Yang, Y. Sun, Z. Jia, P. Ren, C. Liu, Q. Yang, and G. Zhao, Ceram. Int., 2019, 45, 12727-12733.   DOI
23 S. Theohari and C. Kontogeorgou, Appl. Surf. Sci., 2013, 284, 611-618.   DOI
24 H. Habazaki, M. Teraoka, Y. Aoki, P. Skeldon, and G. E. Thompson, Electrochim. Acta., 2010, 55, 3939-3943.   DOI