Browse > Article
http://dx.doi.org/10.5229/JKES.2021.24.1.1

New Design of Li[Ni0.8Co0.15Al0.05]O2 Nano-bush Structure as Cathode Material through Electrospinning  

Nam, Yun-Chae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Lee, Seon-Jin (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Kim, Hae-In (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Son, Jong-Tae (Department of Nano-Polymer Science & Engineering Korea National University of Transportation)
Publication Information
Journal of the Korean Electrochemical Society / v.24, no.1, 2021 , pp. 1-6 More about this Journal
Abstract
In this study, new morphology of NCA cathode material for lithium ion batteries was obtained through the electrospinning method. The prepared NCA nanofibers formed a nano-bush structure, and the primary particles were formed on the surface of the nanofibers. The embossing primary particles increased the surface area thus increasing the reactivity of lithium ions. The nano-bush structure could shorten the Li+ diffusion path and improve the Li+ diffusion coefficient. Scanning electron microscopy (SEM) revealed that the synthesized material consisted of nanofibers. The surface area of the nanofibers increased by primary particles was measured using atomic force microscopy (AFM). X-ray diffraction (XRD) analysis was carried out to determine the structure of the NCA nanofibers.
Keywords
Li-ion batteries; Cathode material; Electrospinning; $Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2$;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y. Tang, Y. Zhang, W. Li, B. Ma, and X. Chen, Chem. Soc. Rev. 44, 5926 (2015).   DOI
2 S. Xia, J.-J. Liu,., F. Li, F. Cheng, X. Li, C. Sun, and H. Guo, Ceram Int 44(8), 9294 (2018).   DOI
3 L. Qiu, W. Xiang, W. Tian, C-L. Xu, Y-C., Li, Z. G. Wu, and X. D. Guo, Nano Energy, 63, 103818 (2019).   DOI
4 W. Liu, P. Oh, X. Liu, M. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Chem. Int. Ed. 54, 4440 (2015).   DOI
5 P. He, H. Yu, D. Lia, and H. Zhou, J. Mater. Chem. 22, 3680 (2012).   DOI
6 Y. Chen, P. Li, S. Zhao, Y. Zhuang, S. Zhao, and Q. Zhou, RSC Adv. 7, 29233 (2017).   DOI
7 W. Chen, Y. Li, D. Yang, X. Feng, X. Guan, and L. Mi, Electrochim. Acta 190, 932 (2016).   DOI
8 S.H. Ju, H.C. Jang, and Y.C. Kang, Electrochim. Acta 52, 7286 (2007).   DOI
9 C.J. Han, J.H. Yoon, W.I. Cho and H. Jang, J. Power Sources. 136, 132-138. (2004).   DOI
10 S.B. Majumder, S. Nieto and R.S. Katiyar, J. Power Sources. 154, 262-267 (2006).   DOI
11 H. Ouyang, X. Li, Z. Wang, H. Guo, W. Peng and Z. He, Funct. Mater. Lett., 11 1850083 (2018).   DOI
12 M. Liang, D. Song, H. Zhang, X. Shi, Q. Wang, and L. Zhang, ACS Appl. Mater. Interface, 9 38567-38574 (2017).   DOI
13 H. Xie, K. Du, G. Hu, J. Duan, Z. Peng, and Z. Zhang, J. Mater. Chem. A, 3 20236 (2015).   DOI
14 L. Zhang, Z. Zhao, X. Li, H. Fang, L. Wang, Y. Song, and X. Jia, Mater. Res. Express, 7, 015526 (2020).   DOI
15 J. J. Bae, J. W. Shin, S. J. Lee, S. J. Kim, T. W. Hong, and J. T. Son, J. Nanosci. Nanotechnol. 20(1), 338 (2020).   DOI
16 Cai, L., Liu, Z., An, K. and Liang, C., Journal of The Electrochemical Society, 159(7), 924-928. (2012).
17 Stoyanova, R., Solid State Ionics, 128(1-4), 1-10. (2000).   DOI
18 R. Chen, H. Zhang, J. Xie, Y. Lin, J. Yu, and. L. Chen, Chem. Electro. Chem, 5(21), 3176-3182, (2018).