Browse > Article
http://dx.doi.org/10.5229/JKES.2020.23.3.57

Accelerated Formation of Surface Films on the Degradation of LiCoO2 Cathode at High Temperature  

Sung, Jong Hun (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University)
Hasan, Fuead (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University)
Yoo, Hyun Deog (Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University)
Publication Information
Journal of the Korean Electrochemical Society / v.23, no.3, 2020 , pp. 57-65 More about this Journal
Abstract
It is crucial to investigate the thermal degradation of lithium-ion batteries (LIBs) to understand the possible malfunction at high temperature. Herein, we investigated the effects of surface film formation on the thermal degradation of lithium cobalt oxide (LiCoO2, LCO) cathode that is one of representative cathode materials. Cycling test at 60℃ exhibited poorer cycleability compared with the cycling at 25℃. Cathodes after the initial 5 cycles at 60℃ (60-LCO) exhibited higher impedance compared to the cathode after initial 5 cycles at 25℃ (25-LCO), resulting in the lower rate capability upon subsequent cycling at 25℃, although the capacity values were similar at the lowest C-rate of 0.1C. In order to understand degradation of the LCO cathode at the high temperature, we analyzed the cathodes surface using X-ray photoelectron spectroscopy (XPS). Among various peaks, intensity of lithium hydroxide (LiOH) increased substantially after the operation at 60℃, and the C-C signal that represents the conductive agent was distinctly lower on 60-LCO compared to 25-LCO. These results pointed to an excessive formation of cathode-electrolyte interphase including LiOH at 60℃, leading to the increase in the resistance and the resultant degradation in the electrochemical performances.
Keywords
Lithium Cobalt Oxide; Surface Film; Thermal Degradation; Lithium-Ion Batteries; Resistance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Zheng, P. Yan, L. Estevez, C. Wang and J.-G. Zhang, 'Effect of calcination temperature on the electrochemical properties of nickel-rich $LiNi_{0.76}Mn_{0.14}Co_{0.10}O_2$ cathodes for lithium-ion batteries', Nano Energy, 49, 538 (2018).   DOI
2 W. Cho, Y. J. Lim, S.-M. Lee, J. H. Kim, J.-H. Song, J.-S. Yu, Y.-J. Kim and M.-S. Park, 'Facile Mn surface doping of Ni-rich layered cathode materials for lithium ion batteries', ACS Appl. Mater. Interfaces, 10, 38915 (2018).   DOI
3 L. Zhu, T.-F. Yan, D. Jia, Y. Wang, Q. Wu, H.-T. Gu, Y.-M. Wu and W.-P. Tang, '$LiFePO_4$-Coated $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Materials with Improved High Voltage Electrochemical Performance and Enhanced Safety for Lithium Ion Pouch Cells', J. Electrochem. Soc., 166, A5437 (2019).   DOI
4 Z. Wu, Y. Wang, X. Liu, C. Lv, Y. Li, D. Wei and Z. Liu, 'Carbon Nanomaterial Based Flexible Batteries for Wearable Electronics', Adv. Mater., 31, 1800716 (2019).   DOI
5 L. Daheron, R. Dedryvere, H. Martinez, D. Flahaut, M. Menetrier, C. Delmas and D. Gonbeau, 'Possible Explanation for the Efficiency of Al-Based Coatings on $LiCoO_2$: Surface Properties of $LiCo_{1-x}Al_xO_2$ Solid Solution', Chem. Mater., 21, 5607 (2009).   DOI
6 Y.-C. Lu, A. N. Mansour, N. Yabuuchi and Y. Shao-Horn, 'Probing the origin of enhanced stability of "$AlPO_4$" nanoparticle coated $LiCoO_2$ during cycling to high voltages: combined XRD and XPS studies', Chem. Mater., 21, 4408 (2009).   DOI
7 J. Cho, Y. J. Kim and B. Park, '$LiCoO_2$ cathode material that does not show a phase transition from hexagonal to monoclinic phase', J. Electrochem. Soc., 148, A1110 (2001).   DOI
8 J. N. Reimers and J. Dahn, 'Electrochemical and in situ X-ray diffraction studies of lithium intercalation in $Li_{x-}CoO_2$', J. Electrochem. Soc., 139, 2091 (1992).   DOI
9 G. Amatucci, J. Tarascon and L. Klein, '$CoO_2$, the end member of the $Li_xCoO_2$ solid solution', J. Electrochem. Soc., 143, 1114 (1996).   DOI
10 J.-N. Zhang, Q. Li, Y. Wang, J. Zheng, X. Yu and H. Li, 'Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage $LiCoO_2$ cathode and its interaction with Li anode', Energy Storage Materials, 14, 1 (2018).   DOI
11 A. Yano, M. Shikano, A. Ueda, H. Sakaebe and Z. Ogumi, '$LiCoO_2$ degradation behavior in the high-voltage phase transition region and improved reversibility with surface coating', J. Electrochem. Soc., 164, A6116 (2017).   DOI
12 S.-T. Myung, N. Kumagai, S. Komaba and H.-T. Chung, 'Effects of Al doping on the microstructure of $LiCoO_2$ cathode materials', Solid State Ionics, 139, 47 (2001).   DOI
13 M. Zou, M. Yoshio, S. Gopukumar and J.-i. Yamaki, 'Synthesis of high-voltage (4.5 V) cycling doped $LiCoO_2$ for use in lithium rechargeable cells', Chem. Mater., 15, 4699 (2003).   DOI
14 A. Liu, J. Li, R. Shunmugasundaram and J. Dahn, 'Synthesis of Mg and Mn Doped $LiCoO_2$ and Effects on High Voltage Cycling', J. Electrochem. Soc., 164, A1655 (2017).   DOI
15 C. Hudaya, J. H. Park, J. K. Lee and W. Choi, '$SnO_2$-coated $LiCoO_2$ cathode material for high-voltage applications in lithium-ion batteries', Solid State Ionics, 256, 89 (2014).   DOI
16 Y.-H. Chang and S. Y. Choi, 'Analyses on the Physical and Electrochemical Properties of $Al_2O_3$ Coated $LiCoO_2$', J. Korean Electrochem. Soc., 10, 184 (2007).   DOI
17 A. Zhou, Y. Lu, Q. Wang, J. Xu, W. Wang, X. Dai and J. Li, 'Sputtering $TiO_2$ on $LiCoO_2$ composite electrodes as a simple and effective coating to enhance high-voltage cathode performance', J. Power Sources, 346, 24 (2017).   DOI
18 B. Hwang, C. Chen, M. Cheng, R. Santhanam and K. Ragavendran, 'Mechanism study of enhanced electrochemical performance of $ZrO_2$-coated $LiCoO_2$ in high voltage region', J. Power Sources, 195, 4255 (2010).   DOI
19 S. Oh, J. K. Lee, D. Byun, W. I. Cho and B. W. Cho, 'Effect of $Al_2O_3$ coating on electrochemical performance of $LiCoO_2$ as cathode materials for secondary lithium batteries', J. Power Sources, 132, 249 (2004).   DOI
20 H. Wang, W.-D. Zhang, L.-Y. Zhu and M.-C. Chen, 'Effect of $LiFePO_4$ coating on electrochemical performance of $LiCoO_2$ at high temperature', Solid State Ionics, 178, 131 (2007).   DOI
21 A. Zhou, J. Xu, X. Dai, B. Yang, Y. Lu, L. Wang, C. Fan and J. Li, 'Improved high-voltage and high-temperature electrochemical performances of $LiCoO_2$ cathode by electrode sputter-coating with $Li_3PO_4$', J. Power Sources, 322, 10 (2016).   DOI
22 X. Zhu, K. Shang, X. Jiang, X. Ai, H. Yang and Y. Cao, 'Enhanced electrochemical performance of Mg-doped $LiCoO_2$ synthesized by a polymer-pyrolysis method', Ceram. Int., 40, 11245 (2014).   DOI
23 J. Kim, J. Lee, H. Ma, H. Y. Jeong, H. Cha, H. Lee, Y. Yoo, M. Park and J. Cho, 'Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries', Adv. Mater., 30, 1704309 (2018).   DOI
24 Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan and J. Wang, 'Mg doping and zirconium oxyfluoride coating co-modification to enhance the high-voltage performance of $LiCoO_2$ for lithium ion battery', J. Alloys Compd., 621, 212 (2015).   DOI
25 J. Fu, D. Mu, B. Wu, J. Bi, H. Cui, H. Yang, H. Wu and F. Wu, 'Electrochemical properties of the $LiNi_{0.6}Co_{0.2}Mn_{0.2}O_2$ cathode material modified by lithium tungstate under high voltage', ACS Appl. Mater. Interfaces, 10, 19704 (2018).   DOI
26 P. Elumalai, H. Vasan and N. Munichandraiah, 'A note on overpotential dependence of AC impedance data', J. Solid State Electrochem., 3, 470 (1999).   DOI
27 Z. W. Lebens-Higgins, S. Sallis, N. V. Faenza, F. Badway, N. Pereira, D. M. Halat, M. Wahila, C. Schlueter, T.-L. Lee and W. Yang, 'Evolution of the Electrode-Electrolyte Interface of $LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ Electrodes Due to Electrochemical and Thermal Stress', Chem. Mater., 30, 958 (2018).   DOI
28 S. Verdier, L. El Ouatani, R. Dedryvere, F. Bonhomme, P. Biensan and D. Gonbeau, 'XPS study on $Al_2O_3$-and $AlPO_4$-coated $LiCoO_2$ cathode material for high-capacity Li ion batteries', J. Electrochem. Soc., 154, A1088 (2007).   DOI
29 J. Chen, L. Zhu, D. Jia, X. Jiang, Y. Wu, Q. Hao, X. Xia, Y. Ouyang, L. Peng and W. Tang, '$LiNi_{0.8}Co_{0.15}Al_{0.05}O_2$ cathodes exhibiting improved capacity retention and thermal stability due to a lithium iron phosphate coating', Electrochim. Acta, 312, 179 (2019).   DOI
30 Y. Park, S. H. Shin, H. Hwang, S. M. Lee, S. P. Kim, H. C. Choi and Y. M. Jung, 'Investigation of solid electrolyte interface (SEI) film on $LiCoO_2$ cathode in fluoroethylene carbonate (FEC)-containing electrolyte by 2D correlation X-ray photoelectron spectroscopy (XPS)', J. Mol. Struct., 1069, 157 (2014).   DOI
31 D. H. Doughty and E. P. Roth, 'A general discussion of Li ion battery safety', Electrochem. Soc. Interface, 21, 37 (2012).
32 F. Zheng, M. Kotobuki, S. Song, M. O. Lai and L. Lu, 'Review on solid electrolytes for all-solid-state lithium-ion batteries', J. Power Sources, 389, 198 (2018).   DOI
33 J. B. Goodenough and Y. Kim, 'Challenges for rechargeable Li batteries', Chem. Mater., 22, 587 (2009).   DOI
34 V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, 'Challenges in the development of advanced Li-ion batteries: a review', Energy Environ. Sci., 4, 3243 (2011).   DOI
35 L. Lu, X. Han, J. Li, J. Hua and M. Ouyang, 'A review on the key issues for lithium-ion battery management in electric vehicles', J. Power Sources, 226, 272 (2013).   DOI
36 P. Balakrishnan, R. Ramesh and T. P. Kumar, 'Safety mechanisms in lithium-ion batteries', J. Power Sources, 155, 401 (2006).   DOI
37 A. Jansen, A. Kahaian, K. Kepler, P. Nelson, K. Amine, D. Dees, D. Vissers and M. Thackeray, 'Development of a high-power lithium-ion battery', J. Power Sources, 81, 902 (1999).   DOI
38 K. Liu, Y. Liu, D. Lin, A. Pei and Y. Cui, 'Materials for lithium-ion battery safety', Sci. Adv., 4, eaas9820 (2018).
39 K. Mizushima, P. Jones, P. Wiseman and J. B. Goodenough, '$Li_xCoO_2$ (0   DOI
40 Y. Nishi, 'Lithium ion secondary batteries; past 10 years and the future', J. Power Sources, 100, 101 (2001).   DOI
41 J.-Y. Hwang, S.-T. Myung and Y.-K. Sun, 'Sodium-ion batteries: present and future', Chem. Soc. Rev., 46, 3529 (2017).   DOI