Browse > Article
http://dx.doi.org/10.5229/JKES.2020.23.2.39

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling  

Yang, Seungwon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Park, Joonam (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Byun, Seoungwoo (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Kim, Nayeon (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Ryou, Myung-Hyun (Department of Chemical and Biological Engineering, Hanbat National University)
Lee, Yong Min (Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST))
Publication Information
Journal of the Korean Electrochemical Society / v.23, no.2, 2020 , pp. 39-46 More about this Journal
Abstract
Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.
Keywords
3D Structural Modeling; Composite Electrode; Active Material; Contact Area; Electric Conductivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Armand, M.; Tarascon, J. M., Building better batteries. Nature 2008, 451 (7179), 652-657.   DOI
2 Chu, S.; Cui, Y.; Liu, N., The path towards sustainable energy. Nature Materials 2016, 16, 16.   DOI
3 Cano, Z. P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z., Batteries and fuel cells for emerging electric vehicle markets. Nature Energy 2018, 3(4), 279-289.   DOI
4 Placke, T.; Kloepsch, R.; Dühnen, S.; Winter, M., Lithium ion, lithium metal, and alternative rechargeable battery technologies: the odyssey for high energy density. Journal of Solid State Electrochemistry 2017, 21 (7), 1939-1964.   DOI
5 Cho, I.; Choi, J.; Kim, K.; Ryou, M.-H.; Lee, Y. M., A comparative investigation of carbon black (Super-P) and vapor-grown carbon fibers (VGCFs) as conductive additives for lithium-ion battery cathodes. RSC Advances 2015, 5 (115), 95073-95078.   DOI
6 Wang, Y.; Zhao, D.; Zhang, K.; Li, Y.; Xu, B.; Liang, F.; Dai, Y.; Yao, Y., Enhancing the rate performance of highcapacity LiNi0.8Co0.15Al0.05O2 cathode materials by using Ti4O7 as a conductive additive. Journal of Energy Storage 2020, 28, 101182.   DOI
7 Toçoğlu, U.; Alaf, M.; Akbulut, H., Towards high cycle stability yolk-shell structured silicon/rGO/MWCNT hybrid composites for Li-ion battery negative electrodes. Materials Chemistry and Physics 2020, 240, 122160.   DOI
8 Son, B.; Ryou, M.-H.; Choi, J.; Lee, T.; Yu, H. K.; Kim, J. H.; Lee, Y. M., Measurement and Analysis of Adhesion Property of Lithium-Ion Battery Electrodes with SAICAS. ACS Applied Materials & Interfaces 2014, 6 (1), 526-531.   DOI
9 Choi, J.; Kim, K.; Jeong, J.; Cho, K. Y.; Ryou, M.-H.; Lee, Y. M., Highly Adhesive and Soluble Copolyimide Binder: Improving the Long-Term Cycle Life of Silicon Anodes in Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2015, 7 (27), 14851-14858.   DOI
10 Byun, S.; Roh, Y.; Jin, D.; Ryou, M.-H.; Lee, Y. M., SAICAS를 이용한 리튬이차전지용 복합전극 결착특성 분석. 2018, 21.
11 Kim, K.; Byun, S.; Cho, I.; Ryou, M.-H.; Lee, Y. M., Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes. ACS Applied Materials & Interfaces 2016, 8 (36), 23688-23695.   DOI
12 Lee, Y.; Choi, J.; Ryou, M.-H.; Lee, Y. M. J. P. S.; Technology, Polymeric Materials for Lithium-Ion Batteries (Separators and Binders). 2013, 24 (6), 603-611.
13 Byun, S.; Choi, J.; Roh, Y.; Song, D.; Ryou, M.-H.; Lee, Y. M., Mechanical robustness of composite electrode for lithium ion battery: Insight into entanglement & crystallinity of polymeric binder. Electrochimica Acta 2020, 332, 135471.   DOI
14 Baunach, M.; Jaiser, S.; Schmelzle, S.; Nirschl, H.; Scharfer, P.; Schabel, W., Delamination behavior of lithium-ion battery anodes: Influence of drying temperature during electrode processing. Drying Technology 2016, 34 (4), 462-473.   DOI
15 Kim, K.; Byun, S.; Choi, J.; Hong, S.; Ryou, M.-H.; Lee, Y. M., Elucidating the Polymeric Binder Distribution within Lithium-Ion Battery Electrodes Using SAICAS. ChemPhysChem 2018, 19 (13), 1627-1634.   DOI
16 Kim, N.; Chae, S.; Ma, J.; Ko, M.; Cho, J., Fast-charging high-energy lithium-ion batteries via implantation of amorphous silicon nanolayer in edge-plane activated graphite anodes. Nature Communications 2017, 8 (1), 812.   DOI
17 Lee, J.; Kitchaev, D. A.; Kwon, D.-H.; Lee, C.-W.; Papp, J. K.; Liu, Y.-S.; Lun, Z.; Clement, R. J.; Shi, T.; McCloskey, B. D.; Guo, J.; Balasubramanian, M.; Ceder, G., Reversible Mn2+/Mn4+ double redox in lithiumexcess cathode materials. Nature 2018, 556 (7700), 185-190.   DOI
18 Park, J.; Kim, D.; Appiah, W. A.; Song, J.; Bae, K. T.; Lee, K. T.; Oh, J.; Kim, J. Y.; Lee, Y.-G.; Ryou, M.-H.; Lee, Y. M., Electrode design methodology for all-solidstate batteries: 3D structural analysis and performance prediction. Energy Storage Materials 2019, 19, 124-129.   DOI
19 Park, J.; Kim, D.; Jin, D.; Phatak, C.; Cho, K. Y.; Lee, Y.-G.; Hong, S.; Ryou, M.-H.; Lee, Y. M., Size effects of micro-pattern on lithium metal surface on the electrochemical performance of lithium metal secondary batteries. Journal of Power Sources 2018, 408, 136-142.   DOI
20 Song, J.; Park, J.; Appiah, W. A.; Kim, S.-S.; Munakata, H.; Kanamura, K.; Ryou, M.-H.; Lee, Y. M., 3D electrochemical model for a Single Secondary Particle and its application for operando analysis. Nano Energy 2019, 62, 810-817.   DOI
21 Park, J.; Kim, J. Y.; Shin, D. O.; Oh, J.; Kim, J.; Lee, M. J.; Lee, Y.-G.; Ryou, M.-H.; Lee, Y. M., Dimensioncontrolled solid oxide electrolytes for all-solid-state electrodes: Percolation pathways, specific contact area, and effective ionic conductivity. Chemical Engineering Journal 2019, 123528.
22 Park, J. H.; Bae, K. T.; Kim, K. J.; Joh, D. W.; Kim, D.; Myung, J.-h.; Lee, K. T., Ultra-fast fabrication of tapecast anode supports for solid oxide fuel cells via resonant acoustic mixing technology. Ceramics International 2019, 45 (9), 12154-12161.   DOI
23 Joh, D. W.; Cha, A.; Park, J. H.; Kim, K. J.; Bae, K. T.; Kim, D.; Choi, Y. K.; An, H.; Shin, J. S.; Yoon, K. J.; Lee, K. T., In Situ Synthesized La0.6Sr0.4Co0.2Fe0.8O3−${\delta}$-Gd0.1Ce0.9O1.95 Nanocomposite Cathodes via a Modified Sol-Gel Process for Intermediate Temperature Solid Oxide Fuel Cells. ACS Applied Nano Materials 2018, 1 (6), 2934-2942.   DOI
24 Yan, B.; Lim, C.; Yin, L.; Zhu, L. J. J. o. T. E. S., Three dimensional simulation of galvanostatic discharge of $LiCoO_2$ cathode based on X-ray nano-CT images. 2012, 159 (10), A1604-A1614.   DOI
25 Xia, S.; Mu, L.; Xu, Z.; Wang, J.; Wei, C.; Liu, L.; Pianetta, P.; Zhao, K.; Yu, X.; Lin, F.; Liu, Y., Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries. Nano Energy 2018, 53, 753-762.   DOI