Browse > Article
http://dx.doi.org/10.5229/JKES.2020.23.1.11

Enhanced Electrochemical Performance of NaxFe2(CN)6 Positive Electrode Materials for Lithium-ion Batteries  

Yoo, Seong Tae (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Yoon, Seung Ju (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Kang, Jeong Min (Department of Chemical Engineering and Biotechnology, Korea Polytechnic University)
Kim, Haebeen (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Publication Information
Journal of the Korean Electrochemical Society / v.23, no.1, 2020 , pp. 11-17 More about this Journal
Abstract
The Prussian blue analogues of Fe2(CN)6 and NaxFe2(CN)6 are prepared by precipitation method and evaluated the electrochemical characteristics as positive electrode materials for lithium-ion batteries (LIBs) because of their low cost. Fe2(CN)6 shows a low reversible capacity of 34.6 mAh g-1, whereas sodium-containing NaxFe2(CN)6 exhibits a reversible capacity of 107.5 mAh g-1 when the discharge process proceeds first. When charging is first carried out to remove sodium in the structure, the reversible capacity of 114.1 mAh g-1 is achieved and the cycle performance is further improved. In addition, Nax-Fe2(CN)6 is synthesized at 0℃, room temperature (RT), and 60℃, respectively. Regardless of the synthesis temperature, NaxFe2(CN)6 shows similar initial reversible capacity, but the crystallite size is formed smaller and improved cycle performance when synthetic temperature is lower. The sample synthesized at 0℃ shows a reversible capacity of 86.4 mAh g-1 at the 120th cycle and maintains 76.8% of the initial capacity.
Keywords
Prussian Blue Analogue; Precipitation Method; Positive Electrode Materials; Lithium-Ion Batteries;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 J.B. Goodenough, and Y. Kim, 'Challenges for Rechargeable Li Batteries', Chem. Mater., 22, 587 (2009).   DOI
2 T.-H. Kim, J.-S. Park, S.K. Chang, S. Choi, J.H. Ryu, and H.-K. Song, 'The Current Move of Lithium Ion Batteries Towards the Next Phase', Adv. Energy Mater., 2, 860 (2012).   DOI
3 Y.M. Kim, S. Choi, and J.W. Choi, 'Prussian Blue Analogues for Rechargeable Batteries', J. Korean Electrochem. Soc., 22, 13 (2019).   DOI
4 B. Wang, Y. Han, X. Wang, N. Bahlawane, H. Pan, M. Yan, and Y. Jiang, 'Prussian Blue Analogs for Rechargeable Batteries', iScience, 3, 110 (2018).   DOI
5 K. Hurlbutt, S. Wheeler, I. Capone, and M. Pasta, 'Prussian Blue Analogs as Battery Materials', Joule, 2, 1 (2018).   DOI
6 D-M. Kim, Y. Kim, D. Arumugam, S. W. Woo, Y. N. Jo, M.-S. Park, Y.-J. Kim, N.-S. Choi, and K. T. Lee, 'Co-intercalation of $Mg^{2+}$ and $Na^+$ in $Na_{0.69}Fe_2(CN)_6$ as a High-Voltage Cathode for Magnesium Batteries', ACS Appl. Mater. Interfaces, 8, 8554 (2016).   DOI
7 L. Shen, Z. Wang, and L. Chen, 'Prussian Blues as a Cathode Material for Lithium Ion Batteries', Chem. Eur. J., 20, 1 (2014).   DOI
8 N. Imanishi, T. Morikawa, J. Kondo, Y. Takeda, O. Yamamoto, N. Kinugasa, 'Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery', J. Power Sources, 79, 215 (1999).   DOI
9 P. Nie, L. Shen, H. Luo, B. Ding, G. Xu, J. Wang, and X. Zhang, 'Prussian blue analogues: a new class of anode materials for lithium ion batteries', J. Mater. Chem. A, 2, 5852 (2014).   DOI
10 X. Sun, V. Duffort, and L.F. Nazar, 'Prussian Blue Mg-Li Hybrid Batteries', Adv. Sci., 3, 1600044 (2016).   DOI
11 R.Y. Wang, C.D. Wessells, R.A. Huggins, and Y. Cui, 'Highly Reversible Open Framework Nanoscale Electrodes for Divalent Ion Batteries', Nano Lett., 13, 5748 (2013).   DOI
12 C.D. Wessells, R.A. Huggins, and Y. Cui, 'Copper hexacyanoferrate battery electrodes with long cycle life and high power', Nat. Commun., 2, 550 (2011).   DOI
13 C. Zhang, Y. Xu, M. Zhou, L. Liang, H. Dong, M. Wu, Y. Yang, and Y. Lei, 'Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries', Adv. Funct. Mater., 27, 1604307 (2017).   DOI
14 J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, and H. Yang, 'Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries', Adv. Energy Mater., 8, 1702619 (2018 ).   DOI
15 X. Yan, Y. Yang, E. Liu, L. Sun, H. Wang, X.-Z. Liao, Y. He, and Z.-F. Ma, 'Improved cycling performance of prussian blue cathode for sodium ion batteries by controlling operation voltage range', Electrochim. Acta, 225, 235 (2017).   DOI
16 Y. You, X Yu, Y. Yin, K.-W. Nam, Y.-G. Guo, 'Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries', Nano Res., 8, 117 (2015).   DOI
17 A. Rudola, K. Du, and P. Balaya, 'Monoclinic Sodium Iron Hexacyanoferrate Cathode and Non-Flammable Glyme-Based Electrolyte for Inexpensive Sodium-Ion Batteries', J. Electrochem. Soc., 164, A1098 (2017).   DOI
18 Y. Lu, L. Wang, J. Cheng and J. B. Goodenough, 'Prussian blue: a new framework of electrode materials for sodium batteries', Chem. Commun., 48, 6544 (2012).   DOI