Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.2.60

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition  

Im, Jinsol (Department of Materials Science and Chemical Engineering, Hanyang University)
Ahn, Jinhyeok (Department of Materials Science and Chemical Engineering, Hanyang University)
Kim, Jungmin (School of Chemical Engineering, Sungkyunkwan University)
Sung, Shi-Joon (Convergence Research Center for Solar Energy, DGIST)
Cho, Kuk Young (Department of Materials Science and Chemical Engineering, Hanyang University)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.2, 2019 , pp. 60-68 More about this Journal
Abstract
High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.
Keywords
Lithium Ion Battery; Atomic Layer Deposition; Electrode Coating; AZO;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Jung, 'Mathematical Model of Lithium-Ion Batteries with Blended-Electrode System' J. Power Sources, 264, 184-194 (2014).   DOI
2 B. Reuter, 'Assessment of Sustainability Issues for the Selection of Materials and Technologies during Product Design: A Case Study of Lithium-Ion Batteries for Electric Vehicles' Int. J. Interactive Design and Manufacturing (IJIDeM), 10, 217-227 (2016).   DOI
3 Y.S. Jung, A.S. Cavanagh, A.C. Dillon, M.D. Groner, S.M. George, and S.-H. Lee, 'Enhanced Stability of $LiCoO_2$ Cathodes in Lithium-Ion Batteries Using Surface Modification by Atomic Layer Deposition' J. Electrochem. Soc., 157, A75-A81 (2010).   DOI
4 E. Kazyak, K.N. Wood, and N.P. Dasgupta, 'Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments' Chem. Mater., 27, 6457-6462 (2015).   DOI
5 S.-H. Kang and M.M. Thackeray, 'Enhancing the Rate Capability of High Capacity $xLi_2MnO_3{\cdot}(1-x)LiMO_2$ (M=Mn, Ni, Co) Electrodes by $Li-Ni-PO_4$ Treatment' Electrochem. Commun., 11, 748-751 (2009).   DOI
6 J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, and Z.X. Shen, 'Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design' Adv. Sci., 5, 1700322 (2018).   DOI
7 B. Scrosati and J. Garche, 'Lithium Batteries: Status, Prospects and Future' J. Power Sources, 195, 2419-2430 (2010).   DOI
8 Y.-J. Kim, H. Lee, H. Noh, J. Lee, S. Kim, M.-H. Ryou, Y.M. Lee, and H.-T. Kim, 'Enhancing the Cycling Stability of Sodium Metal Electrodes by Building an Inorganic-Organic Composite Protective Layer' ACS Appl. Mater. Interfaces, 9, 6000-6006 (2017).   DOI
9 G. Zhou, D.-W. Wang, F. Li, L. Zhang, N. Li, Z.-S. Wu, L. Wen, G.Q. Lu, and H.-M. Cheng, 'Graphene-Wrapped $Fe_3O_4$ Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' Chem. Mater., 22, 5306-5313 (2010).   DOI
10 C. Wang, L. Yin, D. Xiang, and Y. Qi, 'Uniform Carbon Layer Coated $Mn_3O_4$ Nanorod Anodes with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries' ACS Appl. Mater. Interfaces, 4, 1636-1642 (2012).   DOI
11 F.-H. Du, B. Li, W. Fu, Y.-J. Xiong, K.-X. Wang, and J.-S. Chen, 'Surface Binding of Polypyrrole on Porous Silicon Hollow Nanospheres for Li-Ion Battery Anodes with High Structure Stability' Adv. Mater., 26, 6145-6150 (2014).   DOI
12 M.J. Lacey, F. Jeschull, K. Edstrom, and D. Brandell, 'Functional, Water-Soluble Binders for Improved Capacity and Stability of Lithium-Sulfur Batteries' J. Power Sources, 264, 8-14 (2014).   DOI
13 J. Ahn, E.K. Jang, S. Yoon, S.-J. Lee, S.-J. Sung, D.-H. Kim, and K.Y. Cho, 'Ultrathin $ZrO_2$ on $LiNi_{0.5}Mn_{0.3}Co_{0.2}O_2$ Electrode Surface via Atomic Layer Deposition for High-Voltage Operation in Lithium-Ion Batteries' Appl. Surf. Sci., https://doi.org/10.1016/j.apsusc.2019.04.123   DOI
14 M.E. Donders, W.M. Arnoldbik, H.C.M. Knoops, W.M.M. Kessels, and P.H.L. Notten, 'Atomic Layer Deposition of $LiCoO_2$ Thin-Film Electrodes for All-Solid-State Li-Ion Micro-Batteries' J. Electrochem. Soc., 160, A3066-A3071 (2013).   DOI
15 X. Wang and G. Yushin, 'Chemical Vapor Deposition and Atomic Layer Deposition for Advanced Lithium Ion Batteries and Supercapacitors' Energy & Environ. Sci., 8, 1889-1904 (2015).   DOI
16 N.P. Dasgupta, H.-B.-R. Lee, S.F. Bent, and P.S. Weiss, 'Recent Advances in Atomic Layer Deposition' Chem. Mater., 28, 1943-1947 (2016).   DOI
17 Y.S. Jung, A.S. Cavanagh, L.A. Riley, S.H. Kang, A.C. Dillon, M.D. Groner, S.M. George, and S.H. Lee, 'Ultrathin Direct Atomic Layer Deposition on Composite Electrodes for Highly Durable and Safe Li-Ion Batteries' Adv. Mater., 22, 2172-2176 (2010).   DOI
18 D. Guan, J.A. Jeevarajan, and Y. Wang, 'Enhanced Cycleability of $LiMn_2O_4$ Cathodes by Atomic Layer Deposition of Nanosized-Thin $Al_2O_3$ Coatings' Nanoscale, 3, 1465-1469 (2011).   DOI
19 Y.S. Jung, A.S. Cavanagh, Y. Yan, S.M. George, and A. Manthiram, 'Effects of Atomic Layer Deposition of $Al_2O_3$ on the $Li[Li_{0.20}Mn_{0.54}Ni_{0.13}Co_{0.13]}O_2$ Cathode for Lithium-Ion Batteries' J. Electrochem. Soc., 158, A1298-A1302 (2011).   DOI
20 S. Boukhalfa, K. Evanoff, and G. Yushin, 'Atomic Layer Deposition of Vanadium Oxide on Carbon Nanotubes for High-Power Supercapacitor Electrodes' Energy & Environ. Sci., 5, 6872-6879 (2012).   DOI
21 J.-Z. Kong, C. Ren, G.-A. Tai, X. Zhang, A.-D. Li, D. Wu, H. Li, and F. Zhou, 'Ultrathin ZnO Coating for Improved Electrochemical Performance Of $LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2$ Cathode Material' J. Power Sources, 266, 433-439 (2014).   DOI
22 H.-M. Cheng, F.-M. Wang, J.P. Chu, R. Santhanam, J. Rick, and S.-C. Lo, 'Enhanced Cycleability in Lithium Ion Batteries: Resulting from Atomic Layer Deposition of $Al_2O_3$ or $TiO_2$ on $LiCoO_2$ Electrodes' J. Phys. Chem. C, 116, 7629-7637 (2012).
23 Y.S. Jung, P. Lu, A.S. Cavanagh, C. Ban, G.-H. Kim, S.-H. Lee, S.M. George, S.J. Harris, and A.C. Dillon, 'Unexpected Improved Performance of ALD Coated $LiCoO_2$/Graphite Li-Ion Batteries' Adv. Energy Mater., 3, 213-219 (2013).   DOI
24 A.Y. Shenouda and H.K. Liu, 'Studies on Electrochemical Behavior of Zinc-Doped $LiFePO_4$ for Lithium Battery Positive Electrode' J. Alloys Compd., 477, 498-503 (2009).   DOI
25 X. Xiao, P. Lu, and D. Ahn, 'Ultrathin Multifunctional Oxide Coatings for Lithium Ion Batteries' Adv. Mater., 23, 3911-3915 (2011).   DOI
26 O.B. Chae, S. Park, J.H. Ryu, and S.M. Oh, 'Performance Improvement of Nano-Sized Zinc Oxide Electrode by Embedding in Carbon Matrix for Lithium-Ion Batteries' J. Electrochem. Soc., 160, A11-A14 (2013).   DOI
27 C. Roldan-Carmona, O. Malinkiewicz, A. Soriano, G. Mínguez Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M.I. Dar, M.K. Nazeeruddin, and H.J. Bolink, 'Flexible High Efficiency Perovskite Solar Cells' Energy & Environ. Sci., 7, 994-997 (2014).   DOI
28 Z.-L. Tseng, C.-H. Chiang, S.-H. Chang, and C.-G. Wu, 'Surface Engineering of ZnO Electron Transporting Layer via Al Doping for High Efficiency Planar Perovskite Solar Cells' Nano, 28, 311-318 (2016).