Browse > Article
http://dx.doi.org/10.5229/JKES.2019.22.1.1

Electrochemical Nitrogen Reduction Reaction to Ammonia Production at Ambient Condition  

Lee, Dong-Kyu (Department of Materials Science & Engineering, Chonnam National University)
Sim, Uk (Department of Materials Science & Engineering, Chonnam National University)
Publication Information
Journal of the Korean Electrochemical Society / v.22, no.1, 2019 , pp. 1-12 More about this Journal
Abstract
The reduction of nitrogen to produce ammonia has been attracting much attention as a renewable energy technology. Ammonia is the basis for many fertilizers and is also considered an energy carrier that can power internal combustion engines, diesel engines, gas turbines, and fuel cells. Traditionally, ammonia has been produced through the Haber-Bosch process, in which atmospheric nitrogen combines with hydrogen at high temperature ($350-550^{\circ}C$) and high pressure (150-300 bar). This process consumes 1-2% of current global energy production and relies on fossil fuels as an energy source. Reducing the energy input required for this process will reduce $CO_2$ emissions and the corresponding environmental impact. For this reason, developing electrochemical ammonia-production methods under ambient temperature and pressure conditions should significantly reduce the energy input required to produce ammonia. In this review, we introduce the electrochemical nitrogen reduction reaction at ambient condition. Numerical studies on the electrochemical nitrogen reduction mechanism have been carried out through the computation of density function theory. Electrodes such as nanowires and porous electrodes have been also actively studied for further participation in electrochemical reactions.
Keywords
Ammonia Production; Ambient Condition; Electrochemical Nitrogen Reduction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Giddey, S. P. S. Badwal and A. Kulkarni, 'Review of electrochemical ammonia production technologies and materials' 38 14576-14594 (2013).   DOI
2 V. Kyriakou, I. Garagounis, E. Vasileiou, A. Vourros and M. Stoukides, 'Progress in the Electrochemical Synthesis of Ammonia' 286 2-13 (2017).   DOI
3 B. M. Lindley, A. M. Appel, K. Krogh-Jespersen, J. M. Mayer and A. J. M. Miller, 'Evaluating the Thermodynamics of Electrocatalytic N2 Reduction in Acetonitrile' American Chemical Society, 1 698-704 (2016).   DOI
4 P. Vanysek, 'Electrochemical series' CRC handbook of chemistry and physics, 8 (2000).
5 M. A. Shipman and M. D. Symes, 'Recent progress towards the electrosynthesis of ammonia from sustainable resources' 286 57-68 (2017).   DOI
6 J.-H. Zhou and Y.-W. Zhang, 'Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective' The Royal Society of Chemistry, 3 591-625 (2018).
7 J. Zhao, J. Zhao and Q. Cai, 'Single transition metal atom embedded into a MoS2 nanosheet as a promising catalyst for electrochemical ammonia synthesis' The Royal Society of Chemistry, 20 9248-9255 (2018).   DOI
8 X. Ren, G. Cui, L. Chen, F. Xie, Q. Wei, Z. Tian and X. Sun, 'Electrochemical N2 fixation to NH3 under ambient conditions: Mo2N nanorod as a highly efficient and selective catalyst' The Royal Society of Chemistry, 54 8474-8477 (2018).   DOI
9 K. J. Uk Sim, Seungtaeg Oh, Donghyuk Jeong, Junsang Moon, Jihun Oh, and Ki Tae Nam, 'Hydrogen Production by Electrolysis and Photoelectrochemical System' (2014).
10 C. Zamfirescu and I. Dincer, 'Ammonia as a green fuel and hydrogen source for vehicular applications' 90, 729-737 (2009).   DOI
11 R. Lan and S. Tao, 'Ammonia as a Suitable Fuel for Fuel Cells' 2 (2014).
12 M. Nazemi, S. R. Panikkanvalappil and M. A. El-Sayed, 'Enhancing the rate of electrochemical nitrogen reduction reaction for ammonia synthesis under ambient conditions using hollow gold nanocages' 49 316-323 (2018).   DOI
13 J. H. Montoya, C. Tsai, A. Vojvodic and J. K. Norskov, 'The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations' 8 2180-2186 (2015).   DOI
14 S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017).   DOI
15 D. Bao, Q. Zhang, F.-L. Meng, H.-X. Zhong, M.-M. Shi, Y. Zhang, J.-M. Yan, Q. Jiang and X.-B. Zhang, 'Electrochemical Reduction of N2 under Ambient Conditions for Artificial N2 Fixation and Renewable Energy Storage Using N2/NH3 Cycle' 29 1604799 (2017).   DOI
16 J. Kong, A. Lim, C. Yoon, J. H. Jang, H. C. Ham, J. Han, S. Nam, D. Kim, Y.-E. Sung, J. Choi and H. S. Park, 'Electrochemical Synthesis of NH3 at Low Temperature and Atmospheric Pressure Using a ${\gamma}$-Fe2O3 Catalyst' American Chemical Society, 5 10986-10995 (2017).   DOI
17 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Electrocatalytic Synthesis of Ammonia at Room Temperature and Atmospheric Pressure from Water and Nitrogen on a Carbon-Nanotube-Based Electrocatalyst' 56 2699-2703 (2017).   DOI
18 X. Yang, J. Nash, J. Anibal, M. Dunwell, S. Kattel, E. Stavitski, K. Attenkofer, J. G. Chen, Y. Yan and B. Xu, 'Mechanistic Insights into Electrochemical Nitrogen Reduction Reaction on Vanadium Nitride Nanoparticles' American Chemical Society, 140 13387-13391 (2018).   DOI
19 K. Kim, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Electrochemical Synthesis of Ammonia from Water and Nitrogen in Ethylenediamine under Ambient Temperature and Pressure' 163 F1523-F1526 (2016).   DOI
20 X. Zhang, R.-M. Kong, H. Du, L. Xia and F. Qu, 'Highly efficient electrochemical ammonia synthesis via nitrogen reduction reactions on a VN nanowire array under ambient conditions' The Royal Society of Chemistry, 54 5323-5325 (2018).   DOI
21 Y. Liu, Y. Su, X. Quan, X. Fan, S. Chen, H. Yu, H. Zhao, Y. Zhang and J. Zhao, 'Facile Ammonia Synthesis from Electrocatalytic N2 Reduction under Ambient Conditions on N-Doped Porous Carbon' American Chemical Society, 8 1186-1191 (2018).   DOI
22 C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou and G. Yu, 'An Amorphous Noble-Metal-Free Electrocatalyst that Enables Nitrogen Fixation under Ambient Conditions' 57 6073-6076 (2018).   DOI
23 N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes modified by Fephthalocyanine' 263 171-174 (1989).   DOI
24 N. Furuya and H. Yoshiba, 'Electroreduction of nitrogen to ammonia on gas-diffusion electrodes loaded with inorganic catalyst' 291 269-272 (1990).   DOI
25 A. Tsuneto, A. Kudo and T. Sakata, 'Lithium-mediated electrochemical reduction of high pressure N2 to NH3' 367 183-188 (1994).   DOI
26 K. Kugler, M. Luhn, J. A. Schramm, K. Rahimi and M. Wessling, 'Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH3 synthesis' The Royal Society of Chemistry, 17 3768-3782 (2015).   DOI
27 V. Kordali, G. Kyriacou and C. Lambrou, 'Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell' The Royal Society of Chemistry, 1673-1674 (2000).
28 F. Koleli and T. Ropke, 'Electrochemical hydrogenation of dinitrogen to ammonia on a polyaniline electrode' 62 306-310 (2006).   DOI
29 R. Lan, J. T. S. Irvine and S. Tao, 'Synthesis of ammonia directly from air and water at ambient temperature and pressure' The Author(s), 3 1145 (2013).   DOI
30 R. Lan and S. Tao, 'Electrochemical synthesis of ammonia directly from air and water using a Li+/H+/NH4+ mixed conducting electrolyte' The Royal Society of Chemistry, 3 18016-18021 (2013).   DOI
31 K. Kim, N. Lee, C.-Y. Yoo, J.-N. Kim, H. C. Yoon and J.-I. Han, 'Communication-Electrochemical Reduction of Nitrogen to Ammonia in 2-Propanol under Ambient Temperature and Pressure' 163 F610-F612 (2016).   DOI
32 D. Yang, T. Chen and Z. Wang, 'Electrochemical reduction of aqueous nitrogen (N2) at a low overpotential on (110)-oriented Mo nanofilm' The Royal Society of Chemistry, 5 18967-18971 (2017).   DOI
33 M.-M. Shi, D. Bao, B.-R. Wulan, Y.-H. Li, Y.-F. Zhang, J.-M. Yan and Q. Jiang, 'Au Sub-Nanoclusters on TiO2 toward Highly Efficient and Selective Electrocatalyst for N2 Conversion to NH3 at Ambient Conditions' 29 1606550 (2017).   DOI
34 S.-J. Li, D. Bao, M.-M. Shi, B.-R. Wulan, J.-M. Yan and Q. Jiang, 'Amorphizing of Au Nanoparticles by CeOx-RGO Hybrid Support towards Highly Efficient Electrocatalyst for N2 Reduction under Ambient Conditions' 29 1700001 (2017).   DOI
35 F. Zhou, L. M. Azofra, M. Ali, M. Kar, A. N. Simonov, C. McDonnell-Worth, C. Sun, X. Zhang and D. R. MacFarlane, 'Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids' The Royal Society of Chemistry, 10 2516-2520 (2017).   DOI
36 S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su and G. Centi, 'Room-Temperature Electrocatalytic Synthesis of NH3 from H2O and N2 in a Gas-Liquid-Solid Three-Phase Reactor' American Chemical Society, 5 7393-7400 (2017).   DOI
37 G.-F. Chen, X. Cao, S. Wu, X. Zeng, L.-X. Ding, M. Zhu and H. Wang, 'Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li+Incorporation Strategy' American Chemical Society, 139 9771-9774 (2017).   DOI
38 X. Zhao, F. Yin, N. Liu, G. Li, T. Fan and B. J. J. o. M. S. Chen, 'Highly efficient metal-organic-framework catalysts for electrochemical synthesis of ammonia from N2 (air) and water at low temperature and ambient pressure' 52 10175-10185 (2017).   DOI
39 H.-M. Liu, S.-H. Han, Y. Zhao, Y.-Y. Zhu, X.-L. Tian, J.-H. Zeng, J.-X. Jiang, B. Y. Xia and Y. Chen, 'Surfactantfree atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction' The Royal Society of Chemistry, 6 3211-3217 (2018).   DOI
40 B. L. Sheets and G. G. Botte, 'Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte' The Royal Society of Chemistry, 54 4250-4253 (2018).   DOI
41 M. Nazemi and M. A. El-Sayed, 'Electrochemical Synthesis of Ammonia from N2 and H2O under Ambient Conditions Using Pore-Size-Controlled Hollow Gold Nanocatalysts with Tunable Plasmonic Properties' American Chemical Society, 9 5160-5166 (2018).   DOI
42 L. Zhang, X. Ji, X. Ren, Y. Ma, X. Shi, Z. Tian, A. M. Asiri, L. Chen, B. Tang and X. Sun, 'Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS2 Catalyst: Theoretical and Experimental Studies' 30 1800191 (2018).   DOI
43 L. Zhang, X. Ji, X. Ren, Y. Luo, X. Shi, A. M. Asiri, B. Zheng and X. Sun, 'Efficient Electrochemical N2 Reduction to NH3 on MoN Nanosheets Array under Ambient Conditions' American Chemical Society, 6 9550-9554 (2018).   DOI
44 Y. Song, D. Johnson, R. Peng, D. K. Hensley, P. V. Bonnesen, L. Liang, J. Huang, F. Yang, F. Zhang, R. Qiao, A. P. Baddorf, T. J. Tschaplinski, N. L. Engle, M. C. Hatzell, Z. Wu, D. A. Cullen, H. M. Meyer, B. G. Sumpter and A. J. Rondinone, 'A physical catalyst for the electrolysis of nitrogen to ammonia' 4 (2018).
45 Y. Yao, Q. Feng, S. Zhu, J. Li, Y. Yao, Y. Wang, Q. Wang, M. Gu, H. Wang, H. Li, X.-Z. Yuan and M. Shao, 'Chromium Oxynitride Electrocatalysts for Electrochemical Synthesis of Ammonia Under Ambient Conditions' 0 1800324 (2018).
46 M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao, L. Bourgeois, X. Zhang and D. R. MacFarlane, 'Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon' The Author(s), 7 11335 (2016).   DOI
47 H. Hirakawa, M. Hashimoto, Y. Shiraishi and T. Hirai, 'Photocatalytic Conversion of Nitrogen to Ammonia with Water on Surface Oxygen Vacancies of Titanium Dioxide' American Chemical Society, 139 10929-10936 (2017).   DOI
48 H. Li, J. Shang, Z. Ai and L. Zhang, 'Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets' American Chemical Society, 137 6393-6399 (2015).   DOI
49 S. Giddey, S. P. S. Badwal, C. Munnings and M. Dolan, 'Ammonia as a Renewable Energy Transportation Media' American Chemical Society, 5 10231-10239 (2017).   DOI
50 G. Dong, W. Ho and C. Wang, 'Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies' The Royal Society of Chemistry, 3 23435-23441 (2015).   DOI
51 F. Haber, 'The synthesis of ammonia from its elements. Nobel Prize Lecture 1918' (1920).
52 K. Tamaru, 'The History of the Development of Ammonia Synthesis' Springer US, 1-18 (1991).
53 J. M. Modak, 'Haber process for ammonia synthesis' 769-77 (2002).
54 M. Appl, 'Ammonia' Wiley-VCH, (2006).
55 C. Guo, J. Ran, A. Vasileff and S.-Z. Qiao, 'Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions' The Royal Society of Chemistry, 11 45-56 (2018).   DOI
56 T. Murakami, T. Nohira, Y. H. Ogata and Y. Ito, 'Electrolytic Ammonia Synthesis in Molten Salts under Atmospheric Pressure Using Methane as a Hydrogen Source' 8 D12-D14 (2005).   DOI
57 B. H. Wang, J. D. Wang, R. Liu, Y. H. Xie and Z. J. J. J. o. S. S. E. Li, 'Synthesis of ammonia from natural gas at atmospheric pressure with doped ceria-Ca3(PO4)2-K3PO4 composite electrolyte and its proton conductivity at intermediate temperature' 11 27-31 (2007).
58 R.-Q. Liu, Y.-H. Xie, J.-D. Wang, Z.-J. Li and B.-H. Wang, 'Synthesis of ammonia at atmospheric pressure with Ce0.8M0.2O2-${\delta}$ (M=La, Y, Gd, Sm) and their proton conduction at intermediate temperature' 177 73-76 (2006).   DOI
59 Y. Abghoui and E. Skulasson, 'Transition Metal Nitride Catalysts for Electrochemical Reduction of Nitrogen to Ammonia at Ambient Conditions' 51 1897-1906 (2015).   DOI
60 Y. Abghoui, A. L. Garden, J. G. Howalt, T. Vegge and E. Skulason, 'Electroreduction of N2 to Ammonia at Ambient Conditions on Mononitrides of Zr, Nb, Cr, and V: A DFT Guide for Experiments' American Chemical Society, 6 635-646 (2016).   DOI
61 Y. Yao, S. Zhu, H. Wang, H. Li and M. Shao, 'A Spectroscopic Study on the Nitrogen Electrochemical Reduction Reaction on Gold and Platinum Surfaces' American Chemical Society, 140 1496-1501 (2018).   DOI