Browse > Article
http://dx.doi.org/10.5229/JKES.2017.20.3.55

Thermal Treatment Effect on Thermoelectric Characteristics of Perovskite La0.5Ca0.5MnO3  

Yang, Su-Chul (Department of Chemical Engineering, Dong-A University)
Publication Information
Journal of the Korean Electrochemical Society / v.20, no.3, 2017 , pp. 55-59 More about this Journal
Abstract
In this study, thermoelectric characteristics of perovskite $La_{0.5}Ca_{0.5}MnO_3$ (LCMO) nanomaterials were investigated by theoretical simulation and experimental analysis. Thermoelectric power factors calculated by DFT simulation were gradually enhanced as increase in annealing temperature. Maximum power factor was obtained with high magnitude of $S^2{\sigma}=566{\mu}W/m{\cdot}K^2$ at 1100 K through a dominant improvement of Seebeck coefficient compared with electrical conductivity. Experimentally, the LCMO nanomaterials were hydrothermally synthesized and then treated by post thermal annealing with temperature variation. X-ray diffraction and SEM analysis illustrated that LCMO exhibited orthorhombic perovskite structures with small grain size of 16~19 nm over 873 K. The results directly confirmed that improvement of crystallinity and decrease of mean grain size given by post thermal annealing lead to enhancements of electrical conductivity and Seebeck coefficient, respectively.
Keywords
Perovskite; Thermoelectric; DFT Simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. W. Oh, D. M. Wee, S. D. Park, B. S. Kim, and H. W. Lee, Physical Review B, 77, 165119 (2008).   DOI
2 G. Yang, J. H. Wu, J. Zhang, and D. W. Ma, Journal of Alloys and Compounds, 678, 12-17 (2016).   DOI
3 T. Zhang, C. G. Jin, T. Qian, X. L. Lu, J. M. Bai, and X. G. Li, Journal of Materials Chemistry, 14, 2787-2789 (2004).   DOI
4 D. F. Zou, S. H. Xie, Y. Y. Liu, J. G. Lin, and J. Y. Li, Journal of Applied Physics, 113, 193705 (2013).   DOI
5 R. Tripathi, A. Dogra, A. K. Srivastava, V. P. S. Awana, R. K. Kotnala, G. L. Bhalla, and H. Kishan, Journal of Physics D-Applied Physics, 42, 025003 (2009).   DOI
6 W. S. Liu, X. Yan, G. Chen, and Z. F. Ren, Nano Energy, 1, 42-56 (2012).   DOI
7 J. F. Li, W. S. Liu, L. D. Zhao, and M. Zhou, Npg Asia Materials, 2, 152-158 (2010).   DOI
8 M. Culebras, R. Toran, C. M. Gomez, and A. Cantarero, Nanoscale Research Letters, 9, 415 (2014).   DOI
9 J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, Science, 321, 554-557 (2008).   DOI
10 X. B. Zhao, X. H. Ji, Y. H. Zhang, T. J. Zhu, J. P. Tu, and X. B. Zhang, Applied Physics Letters, 86, 062111 (2005).   DOI
11 A. J. Minnich, H. Lee, X. W. Wang, G. Joshi, M. S. Dresselhaus, Z. F. Ren, G. Chen, and D. Vashaee, Physical Review B, 80, 155327 (2009).   DOI
12 M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial, and P. Gogna, Advanced Materials, 19, 1043-1053 (2007).   DOI
13 T. E. Humphrey and H. Linke, Physical Review Letters, 94, 096601 (2005).   DOI
14 S. Hebert, D. Berthebaud, R. Daou, Y. Breard, D. Pelloquin, E. Guilmeau, F. Gascoin, O. Lebedev, and A. Maignan, Journal of Physics-Condensed Matter, 28, 013001 (2016).   DOI
15 P. Jha, T. D. Sands, P. Jackson, C. Bomberger, T. Favaloro, S. Hodson, J. Zide, X. F. Xu, and A. Shakouri, Journal of Applied Physics, 113, 193702 (2013).   DOI
16 D. Varshney, I. Mansuri, and A. Yogi, Low Temperature Physics, 36, 629-634 (2010 ).   DOI
17 M. S. Toprak, C. Stiewe, D. Platzek, S. Williams, L. Bertini, E. C. Muller, C. Gatti, Y. Zhang, M. Rowe, and M. Muhammed, Advanced Functional Materials, 14, 1189-1196 (2004).   DOI
18 R. Z. Zhang, X. Y. Hua, P. Guo, and C. L. Wang, Physica B-Condensed Matter, 407, 1114-1118 (2012).   DOI
19 P. D. Borges, D. E. S. Silva, N. S. Castro, C. R. Ferreira, F. G. Pinto, J. Tronto, and L. Scolfaro, Journal of Solid State Chemistry, 231, 123-131 (2015).   DOI