Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.3.87

Poly(phenanthrenequinone)-Poly(acrylic acid) Composite as a Conductive Polymer Binder for Submicrometer-Sized Silicon Negative Electrodes  

Kim, Sang-Mo (Department of Chemical and Biological Engineering, Seoul National University)
Lee, Byeongil (Department of Chemical and Biological Engineering, Seoul National University)
Lee, Jae Gil (Department of Chemical and Biological Engineering, Seoul National University)
Lee, Jeong Beom (Department of Chemical and Biological Engineering, Seoul National University)
Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University)
Kim, Hyung-Tae (Department of Chemical and Biological Engineering, Seoul National University)
Kim, Young Gyu (Department of Chemical and Biological Engineering, Seoul National University)
Oh, Seung M. (Department of Chemical and Biological Engineering, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.3, 2016 , pp. 87-94 More about this Journal
Abstract
In order to improve performances of submicrometer-sized Si negative electrode which shows larger volumetric change than nano-sized Si, composite binders are introduced by blending between poly(phenanthrenequinone) (PPQ) conductive polymer binder and poly(acrylic acid) (PAA) having good adhesion strength due to its carboxyl functional group. Blending between PPQ and PAA shows an effect that the adhesion strength of the Si electrode with the composite conductive binder is greatly improved after blending and this makes its better stable cycle performance. Blending ratios between PPQ and PAA in this work are 2:1, 1:1, 1:2 (by weight) and the best capacity retention at 50th cycle is observed in the electrode with the blending ratio 2:1 (named QA21). This is because that PPQ plays a role of conductive carbon among the Si particles or between Si particles and Cu current collector and PAA binds effectively the particles and the current collector. According to this synergetic effect, the internal resistance of the Si electrode with the blending ratio 2:1 is the smallest value. In addition, the Si electrode with PPQ-PAA composite binder shows the better stable cycle performance than the electrode with conventional super-P conductive carbon (20 wt.%).
Keywords
Conductive composite binder; Si negative electrode; adhesion strength; poly(acrylic acid); lithium-ion batteries;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Z. Y. Zeng, J. P. Tu, Y. Z. Yang, J. Y. Xiang, X. H. Huang, F. Mao and M. Ma, 'Nanostructured Si/TiC composite anode for Li-ion batteries', Electrochim. Acta, 53, 2724 (2008).   DOI
2 J.-H. Kim, H.-J. Sohn, H. Kim, G. Jeong and W. Choi, 'Enhanced cycle performance of SiO-C composite anode for lithium-ion batteries', J. Power Sources, 170, 456 (2007).   DOI
3 K. W. Kim, J. G. Lee, H. Park, J. Kim, J. H. Ryu, Y.-U. Kim and S. M. Oh, 'Effect of Lithium Bis(oxalate)borate as an Electrolyte Additive on Carbon-coated SiO Negative Electrode', J. Korean Electrochem. Soc., 17, 49 (2014).   DOI
4 K. W. Kim, H. Park, J. G. Lee, J. Kim, Y.-U. Kim, J. H. Ryu, J. J. Kim and S. M. Oh, 'Capacity variation of carbon-coated silicon monoxide negative electrode for lithium-ion batteries', Electrochim. Acta, 103, 226 (2013).   DOI
5 T. Kim, S. Park and S. M. Oh, 'Solid-State NMR and Electrochemical Dilatometry Study on $Li^+$ Uptake/Extraction Mechanism in SiO Electrode', J. Electrochem. Soc., 154, A1112 (2007).   DOI
6 H. Kim, M. Seo, M.-H. Park and J. Cho, 'A Critical Size of Silicon Nano-Anodes for Lithium Rechargeable Batteries', Angew. Chem.-Int. Edit., 49, 2146 (2010).   DOI
7 H. Li, X. Huang, L. Chen, Z. Wu and Y. Liang, 'A High Capacity Nano-Si Composite Anode Material for Lithium Rechargeable Batteries', Electrochem. Solid-State Lett., 2, 547 (1999).   DOI
8 K. Peng, J. Jie, W. Zhang and S.-T. Lee, 'Silicon nanowires for rechargeable lithium-ion battery anodes', Appl. Phys. Lett., 93, 033105 (2008).   DOI
9 B. Laik, L. Eude, J.-P. Pereira-Ramos, C. S. Cojocaru, D. Pribat and E. Rouviere, 'Silicon nanowires as negative electrode for lithium-ion microbatteries', Electrochim. Acta, 53, 5528 (2008).   DOI
10 M.-H. Park, M. G. Kim, J. Joo, K. Kim, J. Kim, S. Ahn, Y. Cui and J. Cho, 'Silicon Nanotube Battery Anodes', Nano Lett., 9, 3844 (2009).   DOI
11 T. Song, J. Xia, J.-H. Lee, D. H. Lee, M.-S. Kwon, J.-M. Choi, J. Wu, S. K. Doo, H. Chang, W. I. Park, D. S. Zang, H. Kim, Y. Huang, K.-C. Hwang, J. A. Rogers and U. Paik, 'Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries', Nano Lett., 10, 1710 (2010).   DOI
12 D. Lin, Z. Lu, P.-C. Hsu, H. R. Lee, N. Liu, J. Zhao, H. Wang, C. Liu and Y. Cui, 'A high tap density secondary silicon particle anode fabricated by scalable mechanical pressing for lithium-ion batteries', Energy Environ. Sci., 8, 2371 (2015).   DOI
13 W.-R. Liu, Z.-Z. Guo, W.-S. Young, D.-T. Shieh, H.-C. Wu, M.-H. Yang and N.-L. Wu, 'Effect of electrode structure on performance of Si anode in Li-ion batteries: Si particle size and conductive additive', J. Power Sources, 140, 139 (2005).   DOI
14 S.-M. Kim, M. H. Kim, S. Y. Choi, J. G. Lee, J. Jang, J. B. Lee, J. H. Ryu, S. S. Hwang, J.-H. Park, K. Shin, Y. G. Kim and S. M. Oh, 'Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes', Energy Environ. Sci., 8, 1538 (2015).   DOI
15 S. Komaba, K. Shimomura, N. Yabuuchi, T. Ozeki, H. Yui and K. Konno, 'Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries', J. Phys. Chem. C, 115, 13487 (2011).   DOI
16 J. S. Bridel, T. Azais, M. Morcrette, J. M. Tarascon and D. Larcher, 'Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries', Chem. Mater., 22, 1229 (2010).   DOI
17 Z.-J. Han, N. Yabuuchi, K. Shimomura, M. Murase, H. Yui and S. Komaba, 'High-capacity Si-graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries', Energy Environ. Sci., 5, 9014 (2012).   DOI
18 M. N. Obrovac and L. J. Krause, 'Reversible Cycling of Crystalline Silicon Powder', J. Electrochem. Soc., 154, A103 (2007).   DOI
19 A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C. F. Huebner, T. F. Fuller, I. Luzinov and G. Yushin, 'Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid', ACS Appl. Mater. Interfaces, 2, 3004 (2010).   DOI
20 M. N. Obrovac and L. Christensen, 'Structural Changes in Silicon Anodes during Lithium Insertion/Extraction', Electrochem. Solid-State Lett., 7, A93 (2004).   DOI
21 P. Zuo and G. Yin, 'Si-Mn composite anodes for lithium ion batteries', J. Alloys Compd., 414, 265 (2006).   DOI
22 J. G. Lee, J. Kim, H. Park, J. B. Lee, J. H. Ryu, J. J. Kim and S. M. Oh, 'A Calculation Model to Assess Two Irreversible Capacities Evolved in Silicon Negative Electrodes', J. Electrochem. Soc., 162, A1579 (2015).   DOI
23 J. H. Ryu, J. W. Kim, Y.-E. Sung and S. M. Oh, 'Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries', Electrochem. Solid-State Lett., 7, A306 (2004).   DOI
24 X. N. Zhang, G. L. Pan, G. R. Li, J. Q. Qu and X. P. Gao, '$Si-Si_3N_4$ composites as anode materials for lithium ion batteries', Solid State Ionics, 178, 1107 (2007).   DOI