Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.3.63

Reduction of Li4Ti5O12 Powder Agglomeration by the Addition of Carbon Black during Solid-state Synthesis  

Kim, Duri (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Kang, Sang June (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Hong, Min Young (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.3, 2016 , pp. 63-68 More about this Journal
Abstract
$Li_4Ti_5O_{12}$ is prepared through a solid-state reaction between anatase $TiO_2$ and $Li_2CO_3$ for the negative electrode active materials in quick-charging lithium-ion batteries. The small amount of carbon black (0, 0.5, 1.0, and 3.0 wt%) is added for the reduction of powder agglomeration during heat-treatment. As the amount of the added carbon black increases, the tap density of $Li_4Ti_5O_{12}$ powder gradually decreases. Furthermore, the $Li_4Ti_5O_{12}$ powder prepared with 1.0 wt% of carbon black shows the highest sieved fraction at the powder classification by 325 mesh standard sieve. The $Li_4Ti_5O_{12}$ powders with various contents of carbon black are almost same at the rate capability for the negative electrode materials in lithium-ion batteries.
Keywords
powder agglomeration; carbon black; solid-state synthesis; lithium-ion batteries;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 K. M. Colbow, J. R. Dahn, and R. R. Haering, 'Structure and electrochemistry of the spinel oxides $LiTi_2O_4$ and $Li_{4/3}Ti_{5/3}O_4$' J. Power Sources, 26, 397 (1989).   DOI
2 K. Zaghib, M. Armand, and M. Gauthier, 'Electrochemistry of Anodes in Solid-State Li-Ion Polymer Batteries' J. Electrochem. Soc., 145, 3135 (1998).   DOI
3 Y. Li, G. L. Pan, J. W. Liu, and X. P. Gao, 'Preparation of $Li_4Ti_5O_{12}$ Nanorods as Anode Materials for Lithium-Ion Batteries' J. Electrochem. Soc., 156, A495 (2009).   DOI
4 J. Lim, E. Choi, V. Mathew, D. Kim, D. Ahn, J. Gim, S. Kang, and J. Kim, 'Enhanced High-Rate Performance of $Li_4Ti_5O_{12}$ Nanoparticles for Rechargeable Li-Ion Batteries' J. Electrochem. Soc., 158, A275 (2011).   DOI
5 J. Kim and J. Cho, 'Spinel $Li_4Ti_5O_{12}$ Nanowires for High-Rate Li-Ion Intercalation Electrode' Electrochem. Solid State Lett., 10, A81 (2007).   DOI
6 J. Huang and Z. Jiang, 'The Synthesis of Hollow Spherical $Li_4Ti_5O_{12}$ by Macroemulsion Method and its Application in Li-Ion Batteries' Electrochem. Solid State Lett., 11, A116 (2008).   DOI
7 M.-H. Oh, H.-J. Kim, Y.-J. Kim, W.-K. Son, K.-J. Lim, and S.-G. Park, 'Electrochemical Study of Nanoparticle $Li_4Ti_5O_{12}$ as Negative Electrode Material for Lithium Secondary Battery' J. Korean Electrochem. Soc., 9, 1 (2006).   DOI
8 S.-W. Han, J. H. Ryu, J. Jeong, and D.-H. Yoon, 'Solid-state synthesis of $Li_4Ti_5O_{12}$ for high power lithium ion battery applications' J. Alloys Compd., 570, 144 (2013).   DOI
9 C.-H. Hong, A. Noviyanto, J. H. Ryu, J. Kim, and D.-H. Yoon, 'Effects of the starting materials and mechanochemical activation on the properties of solid-state reacted $Li_4Ti_5O_{12}$ for lithium ion batteries' Ceram. Int., 38, 301 (2012).   DOI
10 K. Liu, 'Some factors affecting sieving performance and efficiency' Powder Technol., 193, 208 (2009).   DOI
11 B. Tian, H. Xiang, L. Zhang, Z. Li, and H. Wang, 'Niobium doped lithium titanate as a high rate anode material for Li-ion batteries' Electrochim. Acta, 55, 5453 (2010).   DOI
12 J. Wolfenstine and J. L. Allen, 'Electrical conductivity and charge compensation in Ta doped $Li_4Ti_5O_{12}$' J. Power Sources, 180, 582 (2008).   DOI
13 T. Yia, J. Shu, Y. Zhu, X. Zhu, R. Zhu, and A. Zhou, 'Advanced electrochemical performance of $Li_4Ti_{4.95}V_{0.05}O_{12}$ as a reversible anode material down to 0 V' J. Power Sources, 195, 285 (2010).   DOI
14 H. Zhao, Y. Li, Z. Zhu, J. Lin, Z. Tian, and R. Wang, 'Structural and electrochemical characteristics of $Li_{4x}Al_xTi_5O_{12}$ as anode material for lithium-ion batteries' Electrochim. Acta, 53, 7079 (2008).   DOI
15 H.-I. Kim, J.-J. Yang, H.-J. Kim, T. Osaka, and S.-G. Park, 'Electrochemical Behavior of $Li_4Ti_5O_{12}/CNT$ Composite for Energy Storage' J. Korean Electrochem. Soc., 13, 235 (2010).   DOI
16 H. Jung, J. Kim, B. Scrosati, and Y. Sun, 'Micron-sized, carbon-coated $Li_4Ti_5O_{12}$ as high power anode material for advanced lithium batteries' J. Power Sources, 196, 7763 (2011).   DOI
17 S.-A. Kim, W.-R. Cho, K.-H. Jeong, B.-W. Cho, and B.- K. Na, 'Electrochemical Characteristics of Cr Added $Li_4Ti_5O_{12}$ Prepared by Sol-gel Method' J. Korean Electrochem. Soc., 14, 27 (2011).   DOI
18 G. Zhu, C. Wang, and Y. Xia, 'A Comprehensive Study of Effects of Carbon Coating on $Li_4Ti_5O_{12}$ Anode Material for Lithium-Ion Batteries' J. Electrochem. Soc., 158, A102 (2011).   DOI
19 J. Gao, J. Ying, C. Jiang, and C. Wan, 'High-density spherical $Li_4Ti_5O_{12}/C$ anode material with good rate capability for lithium ion batteries' J. Power Sources, 166, 255 (2007).   DOI
20 N. Takami, K. Hoshina, and H. Inagaki, 'Lithium Diffusion in $Li_{4/3}Ti_{5/3}O_4$ Particles during Insertion and Extraction' J. Electrochem. Soc., 158, A725 (2011).   DOI
21 W. Cho, J. H. Song, M.-S. Park, J.-H. Kim, J.-S. Kim, and Y.-J. Kim, 'Reaction Behavior of $Li_{4+x}Ti_5O_{12}$ Anode Material as Depth of Discharge' J. Electrochem. Sci. Technol., 1, 85 (2010).   DOI
22 J. H. Ryu, 'Polarization Behavior of $Li_4Ti_5O_{12}$ Negative Electrode for Lithium-ion Batteries' J. Electrochem. Sci. Technol., 2, 136 (2011).   DOI