Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.2.50

Investigation of Spherical LiMn2O4 Cathode Materials by Spray-drying with Different Electrochemical Behaviors at High Rate  

Song, Jun Ho (Electrochemical Energy Conversion & Storage Laboratory, Seoul National University)
Cho, Woosuk (Advanced Batteries Research Center, Korea Electronic Technology Institute)
Kim, Young Jun (Advanced Batteries Research Center, Korea Electronic Technology Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.2, 2016 , pp. 50-56 More about this Journal
Abstract
Spherical lithium manganese oxide spinel, $Li_{1.10}Mn_{1.86}Al_{0.02}Mg_{0.02}O_4$ was prepared by wet-milling, spray-drying, and sintering process. In the spray-drying process, solid content in slurry was varied from 20 to 30 wt%. In the sintering process, the precursors have been sintered under air or $O_2$ atmosphere. While the as-prepared samples exhibit excellent electrochemical properties at room temperature, the discharge voltage profiles at 5.0C are very different one from another. The origin for the difference especially at initial state of discharge is oxygen defect. The sample prepared in air has larger capacity related to the plateau at 3.3 V (vs. $Li/Li^+$) which is caused by the oxygen defects than the one prepared in $O_2$. The difference of discharge voltage profiles especially at the final state of discharge comes from different diffusion rate of $Li^+$ ions. The sample prepared from 30 wt% solid content of slurry shows twice higher diffusion rate than the samples prepared from 20 wt% solid content, which is attributed to better compactness between primary particles for the sample prepared from 30wt % solid content than the one prepared by 20 wt%.
Keywords
cathode material; lithium manganese oxide spinel; spray-drying; rate-capability; diffusion rate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Desilvestro, O. Haas, J. Electrochem. Soc., 137(1), 5C (1990).   DOI
2 S. Megahed, B. Scrosati, J. Power Sources, 51, 79 (1994).   DOI
3 C. Sigala, D. Guyomard, A. Vebaere, Y. Piffard, M. Tourmous, Solid State Ionics, 81, 167 (1995).   DOI
4 D. H. Jang, Y. J. Shin, S. M. Oh, J. Electrochem. Soc., 143, 2204 (1996).   DOI
5 Y. Gao, J. R. Dahn, Solid State Ionics, 84, 33 (1996).   DOI
6 Y. Gao, J. R. Dahn, J. Electrochem. Soc., 143, 100 (1996).   DOI
7 Y. Xia, M. Yoshio, J. Electrochem. Soc., 143, 825 (1996).   DOI
8 G. H. Li, H. Ikuta, T. Uchida, J. Electrochem. Soc., 143, 178 (1996).   DOI
9 S. T. Myung, S. Komaba, N. Kumagai, J. Electrochem. Soc., 148, A482 (2001).   DOI
10 C. Wan, M. Wu, D. Wu, Powder Technology, 199, 154 (2010).   DOI
11 Y. Xia, Q. Zhang, H. Wang, H. Nakamura, H. Noguchi, M. yoshio, Electrochimica Acta, 52, 4708 (2007).   DOI
12 Y. Xia, H. Wang, Q. Zhang, H. Nakamura, H. Noguchi, M. yoshio, J. Power Sources, 166, 485 (2007).   DOI
13 K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Electrochimica Acta, 49, 1565 (2004).   DOI
14 P. P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics, 148, 45 (2002).   DOI