Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.2.45

Hydrocarbon-Organic Composite Membranes for Improved Oxidative Stability for PEMFC Applications  

Park, Satbyul (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Lee, Hyejin (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Bae, Byungchan (Fuel Cell Laboratory, Korea Institute of Energy Research (KIER))
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.2, 2016 , pp. 45-49 More about this Journal
Abstract
In order to mitigate oxidative degradation of polymer membrane during fuel cell operation, an organic radical quencher was introduced. Rutin was selected as a radical quencher and mixed with sulfonated poly(arylene ether sulfone) to prepare composite membrane. Physicochemical properties of the composite membranes such as water uptake and proton conductivity were characterized. Hydrogen peroxide exposure experiment, which can mimic accelerated oxidative stability test during fuel cell operation, was adopted to evaluate the oxidative stability of the membranes. The composite membranes containing Rutin showed similar proton conductivity and enhanced oxidative stability compared to pristine ones.
Keywords
Polymer electrolyte membrane; Composite membrane; Oxidative stability; Radical quencher; Rutin;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, 'Alternative polymer systems for proton exchange membranes (PEMs)', Chem. Rev., 104, 4587 (2004).   DOI
2 M.-S. Shin, and J.-S. Park, 'Preparation and characterization of Nafion composite membranes containing 1-ethyl-3-methylimidazolium tetracyanoborate', J. Kor. Electrochem. Soc., 15, 35 (2012).   DOI
3 H. Zhang, and P. K. Shen, 'Recent development of polymer electrolyte membranes for fuel cells', Chem. Rev., 112, 2780 (2012).   DOI
4 Q. Li, J. O. Jensen, R. F. Savinell, and N. J. Bjerrum, 'High temperature proton exchange membranes based on polybenzimidazoles for fuel cells' Prog. Polym. Sci., 34, 449 (2009).   DOI
5 B. Bae, T. Yoda, K. Miyatake, H. Uchida, and M. Watanabe, 'Proton-Conductive Aromatic Ionomers Containing Highly Sulfonated Blocks for High-Temperature-Operable Fuel Cells', Angew. Chem. Int. Ed., 49, 317 (2010).   DOI
6 J. Ahn, H. Lee, T. H. Yang, C. S. Kim, and B. Bae, 'Synthesis and characterization of multiblock sulfonated poly (arylene ether sulfone) membranes with different hydrophilic moieties for application in polymer electrolyte membrane fuel cell', J. Polym. Sci. A Polym. Chem., 52, 2947 (2014).   DOI
7 E. Endoh, S. Terazono, H. Widjaja, and Y. Takimoto, 'Degradation study of MEA for PEMFCs under low humidity conditions', Electrochem. Solid State Lett., 7, A209 (2004).   DOI
8 E. Endoh, 'Highly durable MEA for PEMFC under high temperature and low humidity conditions', ECS Trans., 3, 9 (2006).
9 R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, and D. Wood, 'Scientific aspects of polymer electrolyte fuel cell durability and degradation', Chem. Rev., 107, 3904 (2007).   DOI
10 Y. Xue, Q. Luan, D. Yang, X. Yao, and K. Zhou, 'Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles', J. Phys. Chem. C, 115, 4433 (2011).   DOI
11 H. Lee, M. Han, Y.-W. Choi, and B. Bae, 'Hydrocarbonbased polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability', J. Power Sources, 295, 221 (2015).   DOI
12 M. Danilczuk, S. Schlick, and F. D. Coms, 'Cerium (III) as a stabilizer of perfluorinated membranes used in fuel cells: in situ detection of early events in the ESR resonator', Macromolecules, 42, 8943 (2009).   DOI
13 O. I. Aruoma, B. Halliwell, B. M. Hoey, and J. Butler, 'The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid', Free Radic. Biol. Med., 6, 593 (1989).   DOI
14 F. Regoli, and G. W. Winston, 'Quantification of total oxidant scavenging capacity of antioxidants for peroxynitrite, peroxyl radicals, and hydroxyl radicals', Toxicol. Appl. Pharmacol., 156, 96 (1999).   DOI
15 D. Bagchi, A. Garg, R. Krohn, M. Bagchi, M. Tran, and S. Stohs, 'Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro', Res. Commun. Mol. Pathol. Pharmacol., 95, 179 (1997).
16 G. Burton, and K. Ingold, 'Autoxidation of biological molecules. 1. Antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro', Am. Chem. Soc., 103, 6472 (1981).   DOI
17 H. Lee, Y.-W. Choi, T.-H. Yang, and B. Bae, 'Hydrocarbon Composite Membranes with Improved Oxidative Stability for PEMFC', J. Kor. Electrochem. Soc., 17, 44 (2014).   DOI
18 I. B. Afanas' ev, A. I. Dcrozhko, A. V. Brodskii, V. A. Kostyuk, and A. I. Potapovitch, 'Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation', Biochem. Pharmacol., 38, 1763 (1989).   DOI
19 S. R. Husain, J. Cillard, and P. Cillard, 'Hydroxyl radical scavenging activity of flavonoids', Phytochemistry, 26, 2489 (1987).   DOI
20 J. A. Vinson, Y. A. Dabbagh, M. M. Serry, and J. Jang, 'Plant flavonoids, especially tea flavonols, are powerful antioxidants using an in vitro oxidation model for heart disease', J. Agric. Food Chem., 43, 2800 (1995).   DOI