Browse > Article
http://dx.doi.org/10.5229/JKES.2016.19.2.29

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels  

Jeon, Won-Yong (Department of Nanobiomedical Sciences and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University)
Choi, Young-Bong (Department of Chemistry, College of Natural Science, Dankook University)
Publication Information
Journal of the Korean Electrochemical Society / v.19, no.2, 2016 , pp. 29-38 More about this Journal
Abstract
Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.
Keywords
Uric acid; Electrochemical biosensor; Poly-osmium hydrogel complex; Uricase; Mediated electron transfer (MET);
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 W. Arneson and J. Brickell, 'Clinical Chemistry: A Laboratory Perspective' F. A. Davis Company, Philadelphia, USA, (2007).
2 I. Grabowska, M. Chudy, A. Dybko, and Z. Brzozka, 'Uric acid determination in a miniaturized flow system with dual optical detection' Sens. Actuators B., 130, 508 (2008).   DOI
3 C. R. Raj and T. Ohsaka, 'Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol' J. Electroanal. Chem., 540, 69 (2003).   DOI
4 P. E. Erden and E. Kilic, 'A review of enzymatic uric acid biosensors based on amperometric detection' Talanta, 107, 312 (2013).   DOI
5 J. Ballesta-Claver, R. Rodriguez-Gomez, and L. F. Capitan-Vallvey, 'Disposable biosensor based on cathodic electrochemiluminescence of tris(2,2-bipyridine) ruthenium(II) for uric acid determination' Anal. Chim. Acta., 770, 153 (2013).   DOI
6 C. R. Raj, F. Kitamura, and T. Ohsaka, 'Square wave voltammetric sensing of uric acid using the self-assembly of mercaptobenzimisazole' Analyst, 9, 1155 (2002).
7 P. Kannan and S. A. John, 'Determination of nanomolar uric and ascorbic acids usingenlarged gold nanoparticles modified electrode' Analytical Biochem., 386, 65 (2009).   DOI
8 F. Arslan, 'An amperometric biosensor for uric acid determination preparedfrom uricase immobilized in polyaniline-polypyrrole film' Sensors, 8, 5492 (2008).   DOI
9 A. K. Bhargava, H. Lal, and C. S. Pundir, 'Discrete analysis of serum uric acid with immobilized uricase and peroxidase' J. Biochem. Biophys. Methods, 39, 125 (1999).   DOI
10 J. Galba' n, Y. Andreu, M. J. Almenara, S. Marcos, and J. R. Castillo, 'Direct determination of uric acid in serum by a fluorometric-enzymatic method based on uricase' Talanta, 54, 847 (2001).   DOI
11 J. Perello, P. Sanchis, and F. Grases, 'Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry' J. Chromatogr. B., 824, 175 (2005).   DOI
12 D. L. Rocha, and F. R. P. Rocha, 'A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine' Microchem. J., 94, 53 (2010).   DOI
13 D.-K. Xu, L. Hua, Z.-M. Li, and H.-Y. Chen, 'Identification and quantitative determination of uric acid in human urine and plasma by capillary electrophoresis with amperometric detection' J. Chromatogr. B., 694, 461 (1997).   DOI
14 E. M. Strochkova, Ya. I. Turyan, I. Kuselman, and A. Shenhar, 'Simultaneous voltammetric determination of uric and ascorbic acids in urine' Talanta, 44, 1923 (1997).   DOI
15 J. B. Jia, B. Q. Wang, A. G. Wu, G. G. Li, Z. Cheng, and S. J. Dong, 'A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional sol-gel network' Anal. Chem., 74, 2217 (2002).   DOI
16 A. L. Ghindilis, P. Atanasov, and E. Wilkins, 'Enzyme catalyzed direct electron transfer: fundamentals and analytical applications' Electroanalysis, 9, 661 (1997).   DOI
17 S. A. John, 'Simultaneous determination of uric acid and ascorbic acid using glassy carbon electrodes in acetate buffer solution' J. Electroanal. Chem., 579, 249 (2005).   DOI
18 R. M. A. Tehrani, and S. A. Ghani, 'Voltammetric analysis of uric acid by zinc-nickel nanoalloy coated composite graphite' Sens. Actuators B, 145, 20 (2010).   DOI
19 S. B. Revin, and S. A. John, 'Electropolymerization of 3-amino-5-mercapto-1, 2, 4-triazole on glassy carbon electrode and its electrocatalytic activity towards uric acid' Electrochim. Acta, 56, 8934 (2011).   DOI
20 Y. Li, G. Ran, W. J. Yi, H. Q. Luo, and N. B. Li, 'A glassy carbon electrode modified with graphene and poly (acridine red) for sensing uric acid' Microchim. Acta, 178, 115 (2012).
21 Y. Cui, C. Yang, W. Pu, M. Oyama, and J. Zhang, 'The influence of gold nanoparticles on simultaneous determination of uric acid and ascorbic acid' Anal. Lett., 43, 22 (2010).
22 F. Sekli-Belaidi, P. Temple-Boyer, and P. Gros, 'Voltammetric microsensor using PEDOT-modified gold electrode for the simultaneous assay of ascorbic and uric acids' J. Electroanal. Chem., 647, 159 (2010).   DOI
23 Y. Zhao, X. Yang, W. Lu, H. Liao, and F. Liao 'Uricase based methods for determination of uric acid in serum,' Microchimica Acta, 164, 1 (2009).   DOI
24 T. Tatsuma and T. Watanabe, 'Oxidase:peroxidase bilayer-modified electrodes as sensors for lactate, pyruvate, cholesterol and uric acid,' Anal. Chim. Acta, 242, 85 (1991).   DOI
25 M. Nanjo and G. G. Guilbault, 'Enzyme electrode sensing oxygen for uric acid in serum and urine' Anal. Chem., 46, 1769 (1974).   DOI
26 S. Uchiyama, H. Shimizu, and Y. Hasebe, 'Chemical amplification of uric acid sensor responses by dithiothreitol' Anal. Chem., 66, 1873 (1991).
27 S. Kuwabata, T. Nakaminami, S. Ito, and H. Yoneyama, 'Preparation and properties of amperometric uric acid sensors' Sens. Actuators B, 52, 72 (1998).   DOI
28 X. Wang, T. Hagiwara, and S. Uchiyama, 'Immobilization of uricase within polystyrene using polymaleimidostyrene as a stabilizer and its application to uric acid sensor' Analytica Chimica Acta, 587, 41 (2007).   DOI
29 K. Moore, N. Vizzard, C. Coleman, J. McMahon, R. Hayes, and C. J. Thompson, 'Extreme altitude mountaineering and type 1 diabetes: the diabetes federation of ireland kilimanjaro expedition' Diabet Med., 18, 749 (2001).   DOI
30 B. A. Gregg and A. Heller, 'Redox polymer films containing enzymes. 2. Glucose oxidase containing enzyme electrodes' J. Phys. Chem., 95, 5976 (1991).   DOI
31 J. Motonaka, K. Miyata, and L. R. Faulkner, 'Micro enzyme-sensor with osmium complex and a porous carbon for measuring uric acid' Analytical Letters, 27, 1 (1994).   DOI
32 C. W. Liao, J. C. Chou, T. P. Sun, S. K. Hsiung, and J. H. Hsieh, 'Preliminary investigations on a new disposable potentiometric biosensor for uric acid' IEEE Trans. Biomed. Eng., 53, 1401 (2006).   DOI
33 R. F. Dutra, K. A. Moreira, M. I. P. Oliveira, A. N. Araujo, M. C. B. S. Montenegro, J. L. L. Filho, and V. L. Silva, 'An inexpensive biosensor for uric acid determination in human serum by flow-injection analysis' Electroanalysis, 17, 701 (2005).   DOI
34 K. Yamamoto, H. Zeng, Y. Shen, M. M. Ahmed, and T.Kato, 'Evaluation of an amperometric glucose biosensor based on a ruthenium complex mediator of low redox potential' Talanta, 66, 1175 (2005).   DOI
35 P. E. A. Ribeiro, C. L. Donnici, and E. N. Santos, 'Cationic rhodium(I) complexes containing 4,4'-disubstituted 2,2'-bipyridines: A systematic variation on electron density over the metal centre' J. Organometal. Chem., 691, 2037 (2006).   DOI
36 G. Binyamin, J. Cole, and A. Heller, 'Mechanical and electrochemical characteristics of composites of wired glucose oxidase and hydrophilic graphite' J. of the Electrochemical Society, 147, 2780 (2000).   DOI
37 T. D. Lumley-Woodyear, P. Rocca, J. Lindsay, Y. Dror, A. Freeman, and A. Heller, 'Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes' Anal. Chem., 67, 1332 (1995)   DOI
38 S. M. Zakeeruddin, D. M. Fraser, M. K. Nazeeruddin, and M. Gratzel, 'Towards mediator design: characterization of tris-(4,4'-substituted-2,2'-bipyridine) complexes of iron(II), ruthenium(II) and osmium(II) as mediators for glucose oxidase of aspergillus niger and other redox proteins' J. Electroanal. Chem., 337, 253 (1992).   DOI
39 Y. B. Choi, J. M. Lee, and H. H. Kim, 'Synthesis of a new cathode redox polymer for high performance in biofuel cells' Bull. Korean Chem. Soc., 35, 2803 (2014).   DOI
40 H. H. Kim, Y. B. Choi, and G. S. Tae, 'Synthesis of several osmium redox complexes and their electrochemical characteristics in biosensor' J. of the Korean Electrochemical Society, 11, 176 (2008).   DOI
41 Y. Hu, F. He, A. Ben, and C. Chen, 'Synthesis of hollow Pt-Ni-graphene nanostructures for nonenzymatic glucose detection' J. of Electroanalytical Chemistry, 726, 55 (2014).   DOI
42 H. Guo, Z. Huang, Y. Zheng, and S. Weng, 'Electrodeposition of nickel nanoparticles modified glassy carbon electrode for nonenzymatic glucose biosensing' Int. J. Electrochem. Sci., 10, 10703 (2015).
43 M. Li, X. Bo, Z. Mu, Y. Zhang, and L. Guo, 'Electrodeposition of nickel oxide and platinum nanoparticles on electrochemically reduced graphene oxide film as a nonenzymatic glucose sensor' Sens. Actuators B, 192, 261 (2014).   DOI