Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.4.161

Comparative Cycling Performance of Zn2GeO4 and Zn2SnO4 Nanowires as Anodes of Lithium- and Sodium Ion Batteries  

Lim, Young Rok (Department of Chemistry, Korea University)
Lim, SooA (Department of Chemistry, Korea University)
Park, Jeunghee (Department of Chemistry, Korea University)
Cho, Won Il (Center for Energy convergence, Korea Institute of Science and Technology)
Lim, Sang Hoo (Dept. of pharmaceutical engineering, Hoseo University)
Cha, Eun Hee (Dept. of pharmaceutical engineering, Hoseo University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.4, 2015 , pp. 161-171 More about this Journal
Abstract
High-yield zinc germanium oxide ($Zn_2GeO_4$) and zinc tin oxide ($Zn_2SnO_4$) nanowires were synthesized using a hydrothermal method. We investigated the electrochemical properties of these $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires as anode materials of lithium ion battery and sodium ion battery. The $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires showed excellent cycling performance of the lithium ion battery, with a maximum capacity of 1021 mAh/g and 692 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 98 %. For the first time, we examined the cycling performance of $Zn_2GeO_4$ and $Zn_2SnO_4$ nanowires for sodium ion batteries. The maximum capacity is 168 mAh/g and 200 mAh/g after 50 cycles, respectively, with a high Coulomb efficiency of 97%. These nanowires are expected as promising electrode materials for the development of high-performance lithium ion batteries as well as sodium ion batteries.
Keywords
Zinc germanium oxide; Zinc tin oxide; Hydrothermal method; Lithium ion battery; Sodium ion battery;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Z. Hu, H. Liu and J. W. Liu, Chin. Sci. Bull. 57, 4119 (2012).   DOI
2 X. L. Wu, Y. G. Guo and L. J. Wan, Chem. Asian J. 8, 1948 (2013).   DOI
3 J. D. Ocon, J. K. Lee and J. Lee, Appl. Chem. Eng. 25, 1 (2014).   DOI
4 M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982).   DOI
5 J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc.151, A698 (2004).   DOI
6 R. A, Higgns, J. Power Sources. 81-82, 13 (1999).   DOI
7 M. Winter and J. O. Besenhard, Electrochim. Acta 45, 31 (1999).   DOI
8 J.K. Feng, M.O. Lai and L. Lu, Electrochem Commun. 13, 287 (2011)   DOI
9 R. Yi, J. Feng, D. Lv, M. L. Gordin, S. Chen, D. Choi and D. Wang, Nano Energy. 2, 498 (2013).   DOI
10 F. Zou, X. Hu, Y. Sun, W. Luo, F. Xia, L. Qie, Y. Jiang and Y. Huang, Chem. Eur. J. 19, 6027 (2013).   DOI
11 W. Li, X. Wang, B. Liu, J. Xu, B. Liang, T. Luo, S. Luo, D. Chen and G. Shen, Nanoscale. 5, 10291 (2013).   DOI
12 F. Zou, X. Hu, L. Qie, Y. Jiang, X. Xiong, Y. Qiao and Y. Huang, Nanoscale. 6, 924 (2014).   DOI
13 W. Chen, L. Lu, S. Maloney, Y. Yang and W. Wang, Phys. Chem. Chem. Phys. 17, 5109 (2015).   DOI
14 A. Rong, X. P. Gao, G. R. Li, T. Y. Yan, H. Y. Zhu, J. Q. Qu and D. Y. Song, J. Phys. Chem. B. 110, 14754 (2006).   DOI
15 X. J. Zhu, L. M. Geng, F. Q. Zhang, Y. X. Liu and L. B. Cheng, J. Power. Sources. 189, 828 (2009).   DOI
16 X. Hou, Q. Cheng, Y. Bai and W. F. Zhang, Solid State Ionics. 181, 631 (2010).   DOI
17 S. M. Becker, M. Scheuermann, V. Sepelak, A. EichhOfer, D. Chen, R. MOnig, A. S. Ulrich, d. H. Hahnab and S. Indris, Phys. Chem. Chem. Phys. 13, 19624 (2011).   DOI
18 N. Feng, S. Peng, X. Sun, L. Qiao, X. Li, P. Wang, D. Hu and D. He, Mater Lett. 76, 66 (2012).   DOI
19 K. Kim, A. Annamalai, S. H. Park, T. H. Kwon, M. W. Pyeon, M. J. Lee, Electrochim Acta. 76, 192 (2012).   DOI
20 W. Song, J. Xie, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Mater. Res. 28, 24 (2012).
21 X. Zheng, Y. Li, Y. Xu, Z. Hong and M. Wei, CrystEng Comm. 14, 2112 (2012).   DOI
22 Y. Zhao, Y. Huang, Q. Wang, K. Wang, M. Zong, L. Wang, W. Zhang and X. Sun, RSC Adv. 3, 14480 (2013).   DOI
23 C. T. Cherian, M. Zheng, M. V. Reddy, B. V. R. Chowdari, and C. H. Sow, ACS Appl. Mater. Interfaces. 5, 6054 (2013).   DOI
24 W. Song, J. Xie, W. Hu, S. Liu, G. Cao, T. Zhu and X. Zhao, J. Power. Sources. 229, 6 (2013).   DOI
25 H. Huang, Y. Huang, M. Wang, X. Chen, Y. Zhao, K. Wang and H. Wu, Electrochim Acta. 147, 201 (2014).   DOI
26 R. Zhang, Y. He and L. Xu, J. Mater. Chem. A. 2, 17979 (2014).   DOI
27 H. Fan, Z. Liu, J. Yang, C. Wei, J. Zhang, L. Wu and We. Zheng, RSC Adv. 4, 49806 (2014).   DOI
28 Y. Zhao, Y. Huang, X. Sun, H. Huang, K. Wang, M. Zong and Q. Wang, Electrochim Acta. 120, 128 (2014).   DOI
29 K Wang, Y. Huangn, H. Huang, Y. Zhao, X. Qin, X. Sun and Y. Wang, Ceram Int. 40, 8021 (2014).   DOI
30 K. Wang, Y. Huangn, T. Han, Y. Zhao, H. Huang and L. Xue, Ceram Int. 40, 2359 (2014).   DOI
31 T. Jiang, X. Tian, H. Gu, H. Zhu and Y Zhou, J. Alloys Compd. 639, 239 (2015).   DOI
32 C. Yan, J. Yang, Q. Xie, Z. Lu, B. Liu, C. Xie, S. Wu, Y Zhang and Y. Guan, Mater Lett. 138, 120 (2015).   DOI
33 L. Qin, S. Liang, A. Pan and X. Tan, Mater Lett. 141, 255 (2015).   DOI
34 B. -Y. Wang, H. -Y. Wang, Y. -L. Ma, X. -H. Zhao, W. Qi and Q. -C. Jiang, J. Power. Sources. 281, 341 (2015).   DOI
35 Z. Li, J. Ding and D. Mitlin, Acc. Chem. Res. 48, 1657 (2015).   DOI
36 L. Baggetto, J. K. Keum , J. F. Browning , G. M. Veith, Electrochem Commu. 34, 41 (2013).   DOI
37 A. Kohandehghan, K. Cui, M. Kupsta, J. Ding, E. M. Lotfabad, W. P. Kalisvaart and D. Mitlin, Nano Lett. 14, 5873 (2014).   DOI
38 Y. Xu , Y. Zhu, Y. Liu and C. Wang, Adv. Energy Mater. 3, 128 (2013).   DOI
39 J. Liu, Y. Wen, P. A. v. Aken, J. Maier and Y. Yu, Nano Lett. 14, 6387 (2014).   DOI
40 D. -H. Nam, K. -S Hong, S. -J. Lim, T. -H. Kim and H.-S. Kwon, J. Phys. Chem. C. 118, 20086 (2014).   DOI
41 Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. Zou, J. Am. Chem. Soc. 132, 14385 (2010).   DOI
42 Z. Li, Y. Zhou, C. Bao, G. Xue, J. Zhang, J. Liu, T. Yuab and Z. Zou, Nanoscale. 4, 3490 (2012).   DOI