Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.3.130

Improvement of Rate Capability and Low-temperature Performances of Graphite Negative Electrode by Surface Treatment with Copper Phthalocyanine  

Jurng, Sunhyung (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Park, Sangjin (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Ryu, Ji Heon (Graduate School of Knowledge-Based Technology and Energy, Korea Polytechnic University)
Oh, Seung M. (Department of Chemical and Biological Engineering, and WCU program of C2E2, Seoul National University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.3, 2015 , pp. 130-135 More about this Journal
Abstract
The rate capability and low-temperature characteristics of graphite electrode are investigated after surface treatment with copper phthalocyanine (CuPc) or phthalocyanine (Pc). Uniform coating layers comprising amorphous carbon or copper are generated after the treatment. The rate performance of graphite electrodes is enhanced by the surface treatment, which is more prominent with CuPc. The resistance of the graphite electrode estimated from electrochemical impedance spectroscopy and pulse resistance measurement is the smallest for the CuPc-treated graphite. It is likely that the amorphous carbon layer formed by the decomposition of Pc facilitates $Li^+$ diffusion and the metallic copper derived from CuPc improves the electrical conductivity of the graphite electrode.
Keywords
lithium-ion battery; low-temperature performance; graphite; copper phthalocyanine; surface treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Li, C. F. Yuan, Z. H. Guo, Z. A. Zhang, Y. Q. Lai and J. Liu, 'Limiting factors for low-temperature performance of electrolytes in LiFePO4/Li and graphite/Li half cells' Electrochim Acta, 59, 69 (2012).   DOI
2 M. C. Smart, B. V. Ratnakumar, K. B. Chin and L. D. Whitcanack, 'Lithium-Ion Electrolytes Containing Ester Cosolvents for Improved Low Temperature Performance' J. Electrochem Soc., 157, A1361 (2010).   DOI
3 B. X. Liu, B. Li and S. Y. Guan, 'Effect of Fluoroethylene Carbonate Additive on Low Temperature Performance of Li-Ion Batteries' Electrochem Solid St, 15, A77 (2012).   DOI
4 S. S. Zhang, 'A review on electrolyte additives for lithium-ion batteries' J. Power Sources, 162, 1379 (2006).   DOI
5 C. Dent and R. Linstead, '215. Phthalocyanines. Part IV. Copper phthalocyanines' Journal of the Chemical Society (Resumed), 1027 (1934).   DOI
6 T. Ghodselahi, M. A. Vesaghi, A. Shafiekhani, A. Baghizadeh and M. Lameii, 'XPS study of the Cu@Cu2O core-shell nanoparticles' Appl. Surf. Sci., 255, 2730 (2008).   DOI
7 J. Zhang, S. Xie, X. Wei, Y. J. Xiang and C. H. Chen, 'Lithium insertion in naturally surface-oxidized copper' J. Power Sources, 137, 88 (2004).   DOI
8 S. Venkatachalam, H. Zhu, C. Masarapu, K. Hung, Z. Liu, K. Suenaga, et al., 'In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications' ACS Nano, 3, 2177 (2009).   DOI
9 S. D. Seo, Y. H. Jin, S. H. Lee, H. W. Shim and D. W. Kim, 'Low-temperature synthesis of CuO-interlaced nanodiscs for lithium ion battery electrodes' Nanoscale Res. Lett., 6, (2011).
10 M. Mancini, F. Nobili, S. Dsoke, F. D. Amico, R. Tossici, F. Croce, et al., 'Lithium intercalation and interfacial kinetics of composite anodes formed by oxidized graphite and copper' J. Power Sources, 190, 141 (2009).   DOI   ScienceOn
11 F. Nobili, S. Dsoke, M. Mancini and R. Marassi, 'Interfacial Properties of Copper-coated Graphite Electrodes: Coating Thickness Dependence' Fuel Cells, 9, 264 (2009).   DOI
12 C. K. Huang, J. S. Sakamoto, J. Wolfenstine and S. Surampudi, 'The limits of low-temperature performance of Li-ion cells' J. Electrochem Soc., 147, 2893 (2000).   DOI
13 D. Aurbach, M. D. Levi and E. Levi, 'A review on the solid-state ionics of electrochemical intercalation processes: How to interpret properly their electrochemical response' Solid State Ionics, 179, 742 (2008).   DOI
14 C. Delacourt, P. L. Ridgway, V. Srinivasan and V. Battaglia, 'Measurements and Simulations of Electrochemical Impedance Spectroscopy of a Three-Electrode Coin Cell Design for Li-Ion Cell Testing' J. Electrochem. Soc., 161, A1253 (2014).   DOI
15 F. Nobili, S. Dsoke, T. Mecozzi and R. Marassi, 'Metaloxidized graphite composite electrodes for lithium-ion batteries' Electrochim Acta, 51, 536 (2005).   DOI   ScienceOn
16 DOE, Energy storage R&D annual progress report, 81, (2011).
17 S. S. Zhang, K. Xu and T. R. Jow, 'Electrochemical impedance study on the low temperature of Li-ion batteries' Electrochim Acta, 49, 1057 (2004).   DOI
18 M. C. Smart, B. V. Ratnakumar and S. Surampudi, 'Use of organic esters as cosolvents in electrolytes for lithiumion batteries with improved low temperature performance' J Electrochem Soc, 149, A361 (2002).   DOI