Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.3.121

Electrolytic Reduction of 1 kg-UO2 in Li2O-LiCl Molten Salt using Porous Anode Shroud  

Choi, Eun-Young (Korea Atomic Energy Research Institute)
Lee, Jeong (Korea Atomic Energy Research Institute)
Jeon, Min Ku (Korea Atomic Energy Research Institute)
Lee, Sang-Kwon (Korea Atomic Energy Research Institute)
Kim, Sung-Wook (Korea Atomic Energy Research Institute)
Jeon, Sang-Chae (Korea Atomic Energy Research Institute)
Lee, Ju Ho (Korea Atomic Energy Research Institute)
Hur, Jin-Mok (Korea Atomic Energy Research Institute)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.3, 2015 , pp. 121-129 More about this Journal
Abstract
The platinum anode for the electrolytic reduction process is generally surrounded by a nonporous ceramic shroud with an open bottom to offer a path for $O_2$ gas produced on the anode surface and prevent the corrosion of the electrolytic reducer. However, the $O^{2-}$ ions generated from the cathode are transported only in a limited fashion through the open bottom of the anode shroud because the nonporous shroud hinders the transport of the $O^{2-}$ ions to the anode surface, which leads to a decrease in the current density and an increase in the operation time of the process. In the present study, we demonstrate the electrolytic reduction of 1 kg-uranium oxide ($UO_2$) using the porous shroud to investigate its long-term stability. The $UO_2$ with the size of 1~4mm and the density of $10.30{\sim}10.41g/cm^3$ was used for the cathode. The platinum and 5-layer STS mesh were used for the anode and its shroud, respectively. After the termination of the electrolytic reduction run in 1.5 wt.% $Li_2O-LiCl$ molten salt, it was revealed that the U metal was successfully converted from the $UO_2$ and the anode and its shroud were used without any significant damage.
Keywords
electrolytic reduction; molten salt; uranium oxide; anode shroud;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 IAEA, International Status and Prospects of Nuclear Power (2008).
2 IAEA, Spent Fuel Reprocessing Options, IAEATECDOC-1587 (2008).
3 J. L. Willit, W. E. Miller and J. E. Battles, 'Electrorefining of uranium and plutonium - a literature review' J. Nucl. Mater., 195, 229 (1992).   DOI
4 J. J. Laidler, J. E. Battles, W. E. Miller, J. P. Ackerman and E. L. Carls, 'Development of pyroprocessing technology' Prog. Nucl. Energ., 31, 131 (1997).   DOI
5 R. W. Benedict and H. F. McFarlane, 'EBR-II spent fuel treatment demonstration project status' Radwaste Magazine, 5, 23 (1998).
6 E. J. Karell and K. V. Gourishankar, 'Separation of actinides from LWR spent fuel using molten salt based electrochemical process' Nucl. Technol., 136, 342 (2001).   DOI
7 J. Konings, R. J. M. Serp, R. Malmbeck, J. Rebizant, C. Scheppler and J.-P. Glatz, 'Electrochemical behavior of plutonium ion in LiCl-KCl eutectic melts' J. Electroanal. Chem., 561, 143 (2004).   DOI   ScienceOn
8 K. M. Goff, R. W. Benedict, K. L. Howden, G. M. Teske and T. A. Johnson, "Pyrochemical treatment of spent nuclear fuel", 364, Proc. of global 2005, Japan (2005).
9 T. Inoue and L. Koch, 'Development of pyroprocessing and its future direction' Nucl. Eng. Technol., 40, 183 (2008).   DOI
10 M. F. Simpson and S. D. Herrmann, 'Modeling the pyrochemical reduction of spent $UO_2$ fuel in a pilot-scale reactor' Nucl. Technol., 162, 179 (2008).   DOI
11 J.-H. Yoo, C.-S. Seo, E.-H. Kim and H. Lee, 'A conceptual study of pyroprocessing for recovering actinides' Nucl. Eng. Technol., 40, 581 (2008).   DOI
12 S. Kitawaki, T. Shinozaki, M. Fukushima, T. Usami, N. Yahagi and M. Kurata, 'Recovery of U-Pu alloy from MOX using pyroprocess series' Nucl. Technol., 162, 118 (2008).   DOI
13 T. Koyama, Y. Sakamura, T. Ogata and H. Kobayashi, "Pyroprocess and metal fuel development for closing actinide fuel cycle with reduced waste burden", 40, Proc. of Global 2009, France (2009).
14 T. Murakami, K. Uozumi, Y. Sakamura, M. Iizuka, H. Ohta, T. Ogata and T. Koyama, "Recent achievements and remaining challenges on pyrochemical reprocessing in CRIEPI", Proc. of the First ACSEPT International Workshop Lisbon, Portugal (2010).
15 K.-C. Song, H. Lee, J.-M. Hur, J.-G. Kim, D.-H. Ahn and Y.-Z. Cho, 'Status of pyroprocessing technology development in Korea', Nucl. Eng. Technol., 42, 131 (2010).   DOI
16 T. Inoue, T. Koyama and Y. Arai, 'State of the art of pyroprocessing technology in Japan' Energy Procedia, 7, 405 (2011).   DOI   ScienceOn
17 G. Z. Chen, D. J. Fray and T. W. Farthing, 'Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride' Nature, 407, 361 (2000).   DOI
18 K. Nagarajan, B. Prabhakara Reddy, S. Ghosh, G. Ravisankar, K. S. Mohandas, U. Kamachi Mudali, K. V. G. Kutty, K. V. Kasi Viswanathan, C. Anand Babu, P. Kalyanasundaram, P. R. Vasudeva Rao and B. Raj, 'Development of pyrochemical reprocessing for spent metal fuels' Energy Procedia, 7, 405 (2011).   DOI   ScienceOn
19 K. M. Goff, J. C. Wass, K. C. Marsden and G. M. Teske, 'Electrochemical reprocessing of used nuclear fuel' Nucl. Eng. Technol., 43, 335 (2011).   DOI   ScienceOn
20 H. Lee, G.-I. Park, K.-H. Kang, J.-M. Hur, J.-G. Kim, D.-H. Ahn, Y.-Z. Cho and E. H. Kim, 'Pyroprocessing technology development at KAERI' Nucl. Eng. Technol., 43, 317 (2011).   DOI
21 K. Yasuda, T. Nohira, R. Hagiwara and Y. H. Ogata, 'Direct electrolytic reduction of solid $SiO_2$ in molten $CaCl_2$ for the production of solar grade silicon' Electrochim. Acta, 53, 106 (2007).   DOI   ScienceOn
22 S. M. Jeong, J. Y. Jung, C. S. Seo and S. W. Park, 'Characteristics of an electrochemical reduction of $Ta_2O_5$ for the preparation of metallic tantalum in a $LiCl-Li_2O$ molten salt' J. Alloy Compd., 440, 210 (2007).   DOI   ScienceOn
23 S. I. Wang, G. M. Haarberg and E. Kvalheim, 'Electrochemical behavior of dissolved $Fe_2O_3$ in molten $CaCl_2-KF$' J. Iron Steel Res. Int., 16, 48 (2008).
24 M. Gibilaro, J. Pivato, L. Cassayre, L. Massot, L. P. Chamelot and P. Taxil, 'Direct electroreduction of oxides in molten fluoride salts' Electrochim. Acta, 56, 5410 (2011).   DOI   ScienceOn
25 S. M. Jeong, H. Y. Yoo, J.-M. Hur and C.-S. Seo, 'Preparation of metallic niobium from niobium pentoxide by an indirect electrochemical reduction in a $LiCl-Li_2O$ molten salt' J. Alloy Compd., 452, 27 (2008).   DOI
26 D. Wang, G. Qiu, X. Jin, X. Hu and G. Z. Chen, 'Electrochemical metallization of solid terbium oxide' Angew. Chem. Int. Edit., 45, 2384 (2006).   DOI   ScienceOn
27 X. Y. Yan and D. J. Fray, 'Production of niobium powder by direct electrochemical reduction of solid $Nb_2O_5$ in a eutectic $CaCl_2$-NaCl melt' Metall. Mater. Trans. B, 33, 685 (2002).   DOI   ScienceOn
28 Q. Xu, L.-Q. Deng, Y. Wu and T. Ma, 'A study of cathode improvement for electro-deoxidation of $Nb_2O_5$ in a eutectic $CaCl_2$-NaCl melt at 1073K' J. Alloy Compd., 396, 288 (2005).   DOI
29 G. Z. Chen, E. Gordo and D. J. Fray, 'Direct electrolytic preparation of chromium powder' Metall. Mater. Trans. B, 35, 223 (2004).   DOI
30 E. Gordo, G. Z. Chen and D. J. Fray, 'Toward optimisation of electrolytic reduction of solid chromium oxide to chromium powder in molten chloride salts' Electrochim. Acta, 49, 2195 (2004).   DOI
31 B. Claux, J. Serp and J. Fouletier, 'Electrochemical reduction of cerium oxide into metal' Electrochim. Acta, 56, 2771 (2011).   DOI   ScienceOn
32 A. M. Abdelkader, K. Tripuraneni Kilby, A. Cox and D. J. Fray, 'DC Voltammetry of Electro-deoxidation of Solid Oxides' Chem. Rev., 113, 2863 (2013).   DOI   ScienceOn
33 D. Wang, X. Jina and G. Z. Chen, 'Solid state reactions: an electrochemical approach in molten salts' Annu. Rep. Prog. Chem., Sect. C, 104, 189 (2008).   DOI   ScienceOn
34 E.-Y. Choi, J.-M. Hur, I.-K. Choi, S. G. Kwon, D.-S. Kang, S. S. Hong, H.-S. Shin, M. A. Yoo and S. M. Jeong, 'Electrochemical reduciton of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio' J. Nucl. Mater., 418, 87 (2011).   DOI   ScienceOn
35 Y. Sakamura, M. Kurata and T. Inoue, 'Electrochemical reduction of $UO_2$ in molten $CaCl_2$ or LiCl' J. Electrochem. Soc., 153, D31 (2006).   DOI
36 E.-Y. Choi, J. W. Lee, J. J. Park, J.-M. Hur, J.-K. Kim, K. Y. Jung and S. M. Jeong, 'Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt' Chem. Eng. J., 207, 514 (2012).
37 E.-Y. Choi, J.-K. Kim, H.-S. Im, I.-K. Choi, S.-H. Na, J. W. Lee, S. M. Jeong and J.-M. Hur, 'Effect of the $UO_2$ form on the electrochemical reduction rate in a $LiCl-Li_2O$ molten salt' J. Nucl. Mater., 437, 178 (2013).   DOI   ScienceOn
38 E.-Y. Choi, C. Y. Won, J.-S. Cha, W. Park, H.-S. Im, S. S. Hong and J.-M. Hur, 'Electrochemical reduction of $UO_2$ in $LiCl-Li_2O$ molten salt using porous and nonporous anode shrouds' J. Nucl. Mater., 444, 261 (2014).   DOI   ScienceOn