Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.3.107

In-Situ Generation of Nanostructured Au Surfaces by Anodic Dissolution Followed by Cathodic Deposition  

Kweon, Suji (Department of Chemistry, Chungbuk National University)
Choi, Suhee (Department of Chemistry, Chungbuk National University)
Kim, Jongwon (Department of Chemistry, Chungbuk National University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.3, 2015 , pp. 107-114 More about this Journal
Abstract
Electrochemical fabrication of nanostructured Au surfaces has received increased attention. In the present work, electrochemical modification of Au surfaces for fabricating nanostructured Au surfaces in the absence of externally added precursors is presented, which is different to the previous methods utilizing electrochemical deposition of externally added precursors. Application of anodic potential at Au surfaces in phosphate buffers containing $Br^-$ resulted in the anodic dissolution of Au, which produced Au precursors at the electrode surfaces. The resulting Au precursors were further reduced at the surface to produce nanostructured Au structures. The effects of applied potential and time on the morphology of Au nanostructures were systematically examined, from which a unique backbone type Au nanostructures was produced. The backbone type Au nanostructures exhibited high surface-enhanced Raman activity. The present work would give insights into the formation of electrochemical fabrication of nanostructured Au surfaces.
Keywords
Anodic dissolution; Cathodic deposition; Au nanostructures; Surface-enhanced Raman activity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. C. Daniel and D. Astruc, 'Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology' Chem. Rev., 104, 293 (2004).   DOI
2 J. Elias, M. Gizowska, P. Brodard, R. Widmer, Y. deHazan, T. Graule, J. Michler, and L. Philippe, 'Electrodeposition of Gold Thin Films with Controlled Morphologies and Their Applications in Electrocatalysis and SERS' Nanotechnology, 23, 255705 (2012).   DOI
3 Y. Tian, H. Q. Liu, G. H. Zhao, and T. Tatsuma, 'Shape-Controlled Electrodeposition of Gold Nanostructures' J. Phys. Chem. B, 110, 23478 (2006).   DOI
4 H. Zhang, J. J. Xu, and H. Y. Chen, 'Shape-Controlled Gold Nanoarchitectures: Synthesis, Superhydrophobicity, and Electrocatalytic Properties' J. Phys. Chem. C, 112, 13886 (2008).   DOI
5 R. G. Freeman, K. C. Grabar, K. J. Allison, R. M. Bright, and et al., 'Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates' Science, 267, 1629 (1995).   DOI   ScienceOn
6 M. Lahav, T. Sehayek, A. Vaskevich, and I. Rubinstein, 'Nanoparticle Nanotubes' Angew. Chem. Int. Ed., 42, 5576 (2003).   DOI
7 P. N. Bartlett, J. J. Baumberg, P. R. Birkin, M. A. Ghanem, and M. C. Netti, 'Highly Ordered Macroporous Gold and Platinum Films Formed by Electrochemical Deposition through Templates Assembled from Submicron Diameter Monodisperse Polystyrene Spheres' Chem. Mater., 14, 2199 (2002).   DOI
8 B. Seo, S. Choi, and J. Kim, 'Simple Electrochemical Deposition of Au Nanoplates from Au(I) Cyanide Complexes and Their Electrocatalytic Activities' ACS Appl. Mater. Interfaces, 3, 441 (2011).   DOI
9 M. Hyun, S. Choi, Y. W. Lee, S. H. Kwon, S. W. Han, and J. Kim, 'Simple Electrodeposition of Dendritic Au Rods from Sulfite-Based Au(I) Electrolytes with High Electrocatalytic and SERS Activities' Electroanalysis, 23, 2030 (2011).   DOI
10 Y. Xia, J. Liu, W. Huang, and Z. Li, 'Electrochemical Fabrication of Clean Dendritic Au Supported Pt Clusters for Electrocatalytic Oxidation of Formic Acid' Electrochim. Acta, 70, 304 (2012).   DOI
11 C. Guo, Y. Xia, Y.-Z. Xu, J.-F. Zheng, and Z.-L. Li, 'Transformation of Randomly Aggregated Gold Nanoparticles into Dendritic Structures by Square Wave Potential Pulses' Mater. Lett., 65, 2326 (2011).   DOI
12 H. J. Qiu and X. R. Huang, 'Effects of Pt Decoration on the Electrocatalytic Activity of Nanoporous Gold Electrode toward Glucose and Its Potential Application for Constructing a Nonenzymatic Glucose Sensor' J. Electroanal. Chem., 643, 39 (2010).   DOI
13 X. Xu, J. Jia, X. Yang, and S. Dong, 'A Templateless, Surfactantless, Simple Electrochemical Route to a Dendritic Gold Nanostructure and Its Application to Oxygen Reduction' Langmuir, 26, 7627 (2010).   DOI
14 G. D. Christian, M. Chateau-Gosselin, and G. J. Patriarche, 'Electrogeneration of Gold(III) in Halide Media' Anal. Chim. Acta, 107, 83 (1979).   DOI
15 T. H. Lin, C. W. Lin, H. H. Liu, J. T. Sheu, and W. H. Hung, 'Potential-Controlled Electrodeposition of Gold Dendrites in the Presence of Cysteine' Chem. Commun., 47, 2044 (2011).   DOI
16 J.-J. Feng, A.-Q. Li, Z. Lei, and A.-J. Wang, 'Low- Potential Synthesis of "Clean" Au Nanodendrites and Their High Performance toward Ethanol Oxidation' ACS Appl. Mater. Interfaces, 4, 2570 (2012).   DOI
17 S. Trasatti and O. A. Petrii, 'Real Surface-Area Measurements in Electrochemistry' Pure Appl. Chem., 63, 711 (1991).
18 F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, 'Plasmon Resonances of a Gold Nanostar' Nano Lett., 7, 729 (2007).   DOI
19 P. A. Kohl, 'Electrodeposition of Gold' M. Schlesinger and M. Paunovic, 115, John Wiley & Sons, New Jersy (2010).
20 G. Schatz, M. Young, and R. Van Duyne, 'Electromagnetic Mechanism of SERS' K. Kneipp, M. Moskovits, and H. Kneipp, 103, 19, Springer Berlin Heidelberg, Evanston (2006).