Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.2.86

Materials and Compartments for Flexible Dye Sensitized Solar Cell  

Jung, In-Soo (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University)
Park, Byung-Wook (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University)
Lee, Jae-Joon (Nanotechnology Research Center & Department of Applied Life Science, College of Biomedical and Health Science, Konkuk University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.2, 2015 , pp. 86-94 More about this Journal
Abstract
In order to solve incoming environmental crisis and an energy crunch caused by the consumption of fossil fuels, lots of investigations and developments for solar cell application are getting a spotlight in various aspects. Amongst many solar cells, a flexible dye sensitized solar cell is an attractive research field from fundamentals to commercialization. In this manuscript, we introduce materials and available techniques for the future scientific research and technical developments in commercialization.
Keywords
Flexible; Dye sensitized solar cell; low temperature fabrication techniques; TCO free counter electrode; take placing the liquid electrolyte;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. N. Murakami, Y. Kijitori, N. Kawashima, and T. Miyasaka, 'UV light-assisted chemical vapor deposition of $TiO_2$ for efficiency development at dye-sensitized mesoporous layers on plastic film electrodes', Chem. Lett., 32, 1076-7 (2003).   DOI
2 H. Kim, A. Pique, G. P. Kushto, R. C. Y. Auyeung, S. H. Lee, C. B. Arnold, et al., 'Dye sensitized solar cells using laser processing techniques', In: Proc SPIE-Int Soc Opt Eng. 2004 [5339 (Photon Processing in Microelectronics and Photonics III), 348-56
3 H. Pan, S. H. Ko, N. Misra, and C. P. Grigoropoulos, 'Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics', Appl. Phys. Lett., 94, 071117/1-3 (2009).   DOI
4 T. Yamaguchi, N. Tobe, D. Matsumoto, T. Nagai, H. Arakawa, 'Highly efficient plastic-substrate dye-sensitized solar cells with validated conversion effciency of 7.6%', Sol. Energy Mater. Sol. Cells, 94, 812-6 (2010).   DOI
5 F. Pichot, J. R. Pitts, and B. A. Gregg, 'Low-temperature sintering of $TiO_2$ colloids: application to flexible dye-sensitized solar cells', Langmuir, 16(13), 5626-30 (2000).   DOI
6 T. Miyasaka, M. Ikegami, and Y. Kijitori, 'Photovoltaic performance of plastic dye sensitized electrodes prepared by low-temperature binder-free coating of mesoscopic titania', J. Electrochem. Soc., 154, A455-61.49 (2007).   DOI
7 P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, 'A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte', Nature Materials, 2, 402-407 (2003).   DOI
8 S. J. Park, K.-C. Yoo, J.-Y. Kim, J. Y. Kim, D.-K. Lee, B. S. Kim, H. G. Kim, J. H. Kim, J. H. Cho, and M. J. Ko, 'Water-Based Thixotropic Polymer Gel Electrolyte for Dye-Sensitized Solar Cells', ACS Nano, 7, 4050-4056 (2013).   DOI
9 C.-L. Chen, H. Teng, and Y.-L. Lee, 'In Situ Gelation of Electrolytes for Highly Efficient Gel-State Dye-Sensitized Solar Cells', Advanced Materials, 23(36), 4199-4204 (2011).   DOI
10 D. K. Roh, W. S. Chi, H. R. Jeon, S. J. Kim, and J. H. Kim, 'High Efficiency Solid-State Dye-Sensitized Solar Cells Assembled with Hierarchical Anatase Pine Tree-like $TiO_2$ Nanotubes', 24(3) 379-386 (2014).   DOI
11 U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, and M. Gratzel, 'Solid-state dye-sensitized mesoporous $TiO_2$ solar cells with high photon-to-electron conversion efficiencies', Nature, 395, 583-585 (1998).   DOI
12 N. Cai, S.-J. Moon, Le Cevey-Ha, T. Moehl, R. H. Baker, P. Wang, S. M. Zakeeruddin, and M. Gratzel, 'An Organic D-${\pi}$-A Dye for Record Efficiency Solid-State Sensitized Heterojunction Solar Cells', Nano Lett., 11(4), 1452-1456 (2011).   DOI
13 E. Johansson, A. Sandell, H. Siegbahn, H. Rensmo, B. Mahrov, et al., 'Interfacial Properties of Photovoltaic $TiO_2$/dye/PEDOT-PSS Heterojunctions' Synthetic metals, 149, 157-167 (2005).   DOI
14 L. Yang, U. B. Cappel, E. L. Unger, M. Karlsson, K. M. Karlsson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, and E. M. J. Johansson, 'Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells' Physical Chemistry, Chemical Physics, 14, 779-789 (2012).   DOI
15 Q.-B. Meng, K. Takahashi, X.-T. Zhang, I. Sutanto, T. N. Rao, O. Sato, and A. Fujishima, H. Watanabe, T. Nakamori , and M. Uragami, "Fabrication of an Efficient Solid-State Dye-Sensitized Solar Cell", Langmuir, 19, 3572-3574 (2003).   DOI
16 B.-W. Park, L. Yang, E. M. J. Johansson, N. Vlachopoulos, A. Chams, C. Perruchot, M. Jouini, G. Boschloo, and A. Hagfeldt, 'Neutral, Polaron and Bipolaron States in PEDOT Prepared by Photo-electrochemical Polymerization and the Effect on Charge Generation Mechanism in the Solid State Dye Sensitized Solar Cell' The Journal of Physical Chemistry C, 117, 22484-22491 (2013).   DOI
17 J. Zhang, L. Yang, Y. Shen, B.-W. Park, Y. Hao, E. M. J. Johansson, G. Boschloo, N. Vlachopoulos, A. Hagfeldt, L. Kloo, E. Gabrielsson, L. Sun, A. Jarboui, C. Perruchot, and M. Jouini, 'Hole transporting material poly (3, 4-ethylenedioxyothiophene) generated from organic and aqueous photoelectrochemical polymerization for an allsolid state dye sensitized solar cell', The Journal of Physical Chemistry C, April, 21, 118, 16591-16601 (2014).   DOI
18 L. Yang, J. Zhang, Y. Shen, B.-W. Park, D. Bi, E. M. J. Johansson, G. Boschloo, A. Hagfeldt, C. Perruchot, M. Jouini, and N. Vlachopoulos, 'New Approach for Preparation of Efficient Solid-State Dye-Sensitized Solar Cells by Photoelectrochemical Polymerization in Aqueous Micellar Solution', Journal of Physical Chemistry Letter, 4, 4026-4031 (2013).   DOI
19 B. O'Regan, F. Lenzmann, R. Muis, and J. Wienke, 'A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated $P25TiO_2$ and CuSCN: Analysis of Pore Filling and IV Characteristics', Chem. Mater., 14, 5023-5029 (2002).   DOI
20 Z. Lan, J. Wu, J. Lin, and M. Huang, 'Morphology controllable fabrication of Pt counter electrodes for highly efficient dye-sensitized solar cells', J. Mater. Chem., 22, 3948-3954 (2012).   DOI
21 T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. Humphry-Baker, P. Comte, P. Pechy, and M. Gratzel, 'Highly Efficient Dye-Sensitized Solar Cells Based on Carbon Black Counter Electrodes', J. Electrochem. Soc., 153, A2255-A2261 (2006).   DOI
22 Y. Wang, C. Zhao, D. Qin, M. Wu, W. Liuc, and T. Ma, 'Transparent flexible Pt counter electrodes for high performance dye-sensitized solar cells', J. Mater. Chem., 22, 22155-22159 (2012).   DOI
23 J. D. Roy-Mayhew, D. J. Bozym, C. Punckt, and I. A. Aksay, 'Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells', ACS Nano, 4(10), 6203-6211 (2010)   DOI   ScienceOn
24 W. J. Lee, E. Ramasamy, D. Y. Lee, and J. S. Song, 'Efficient Dye-Sensitized Solar Cells with Catalytic Multiwall Carbon Nanotube Counter Electrodes', ACS Appl. Mater. Interfaces, 1, 1145-1149 (2009).   DOI
25 B.-W. Park, M. Pazoki, K. Aitola, S. H. Jeong, E. M. J. Johansson, A. Hagfeldt, and G. Boschloo, 'Understanding Interfacial Charge Transfer between Metallic PEDOT Counter Electrodes and a Cobalt Redox Shuttle in Dye-Sensitized Solar Cells', ACS Appl. Mater. Interfaces, 6, 2074-2079 (2014).   DOI
26 K. Okada, H. Matsui, T. Kawashima, T. Ezure, and N. Tanabe, '$100\;mm{\times}100\;mm$ large-sized dye sensitized solar cells', J. Photochem. and Photobio. A: Chem., 164, 193 (2004).   DOI
27 G. Smestad, "Nanocrystalline Solar Cell Kit", Institute for Chemical Education in the University of Wisconsin, p. 17, (1998).
28 M. K. Nazeeruddin, P. Pe'chy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, M. 'Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline $TiO_2$-Based Solar Cells', J. Am. Chem. Soc., 123, 1613 (2001).   DOI
29 G. Schlichthorl, S. Y. Huang , J. Sprague, A. J. Frank, 'Band Edge Movement and Recombination Kinetics in Dye-Sensitized Nanocrystalline $TiO_2$ Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy', J. Phys. Chem. B, 101, 8141 (1997).   DOI
30 S. Takenaka, Y. Maehara, H. Imai, M. Yoshikawa, and S. Shiratori, 'Layer-by-layer self-assembly replication technique: application to photoelectrode of dye-sensitized solar cell', Thin Solid Films, 346, 438-439 (2003).
31 M. Gratzel, 'Dye-sensitized solar cells', J. Photochem. and Photobio. C: Photochem., Reviews 4, 145 (2003).   DOI
32 S. Ito, T. Kitamura, Y. Yanagida, 'Facile fabrication of mesoporous TiO2 electrodes for dye solar cells: chemical modification and repetitive coating Original Research Article', S. Solar Energy Mater. & Solar Cells, 76, 3-13 (2003).   DOI
33 D. M. Chapin, C. S. Fuller, and G. L. Pearson, J. Appl. Phys., 25, 676 (1954).   DOI
34 J. S. Connolly, 'Notiz uber Verstarkung photoelectrischer Strome durch potische Sensibilisirung', Academic press, (1981).
35 Murakami and M. Graetzel, 'Counter electrodes for application of functional materials as catalysts', Inorg Chim Acta., 361, 572-80 (2008).   DOI
36 H. Tsubomura, M. Matsumura, Y. Nomura, and T. Amamiya, 'Dye sensitised zinc oxide: aqueous electrolyte:platinum photocell', Nature (London), 261 (1976).
37 S. Mathew, A. Yella, P. Gao, R. Humphry-Baker, B. F. E. Curchod, N. Ashari-Astani, I. Tavernelli, U. Rothlisberger, Md. K. Nazeeruddin, and M. Gratzel, 'Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers', Nature Chemistry, 6, 242-247 (2014).   DOI
38 J. Kalowekamo and E. Baker, 'Estimating the manufacturing cost of purely organic solar cells', Solar Energy, 83, 1224-31 (2009).   DOI
39 M. Ikegami, J. Suzuki, K. Teshima, M. Kawaraya, and T. Miyasakam, 'Improvement in durability of flexible plastic dye-sensitized solar cell modules', Sol. Energy Mater. Sol. Cells, 93, 836-9 (2009).   DOI
40 K. Onoda, S. Ngamsinlapasathian, T. Fujieda, and S. Yoshikawa, 'The superiority of Ti plate as the substrate of dye-sensitized solar cells', Sol Energy Mater Sol Cells, 91, 1176-81 (2007).   DOI
41 T. Ma, X. Fang, M. Akiyama, K. Inoue, H. Noma, and E. Abe, 'Properties of several types of novel counter electrodes for dye-sensitized solar cells', J. Electroanal Chem., 574(1), 77-83 (2004).   DOI
42 X. Fang, T. Ma, M. Akiyama, G. Guan, S. Tsunematsu, and E. Abe, 'Flexible counter electrodes based on metal sheet and polymer film for dye-sensitized solar cells', Thin Solid Films, 472, 242-5 (2005).   DOI
43 M. Toivola, F. Ahlskog, and P. Lund, 'Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures', Sol. Energy Mater. Sol. Cells, 90, 2881-93 (2006).   DOI
44 A. D. Pasquier, M. Stewart, T. Spitler, and M. Coleman, 'Aqueous coating of effcient flexible TiO2 dye solar cell photoanodes', Sol. Energy Mater. Sol. Cells, 93, 528-35 (2009).   DOI
45 K. Miettunen, J. Halme, M. Toivola, and P. Lund, 'Initial performance of dye solar cells on stainless steel substrates', J. Phys Chem. C., 112, 4011-7 (2008).
46 S. Ngamsinlapasathian, K. Onoda, T. Takayasu, T. Sagawa, and S. Yoshikawa, Meeting Abstracts, 1001, 473 (2010).
47 H. Wang, Y. Liu, H. Xu, X. Dong, H. Shen, Y. Wang, et al., 'An investigation on the novel structure of dye-sensitized solar cell with integrated photoanode', Renewable Energy, 34, 1635-8 (2009).   DOI
48 M. Toivola, J. Halme, K. Miettunen, K. Aitola, P. D. Lund, 'Nanostructured dye solar cells on flexible substrates - review', Int. J. Energy Res., 33, 1145-60 (2009).   DOI
49 K. Miettunen, J. Halme, and P. Lund, 'Segmented cell design for improved factoring of aging effects in dye solar cells', J. Phys Chem. C., 113, 10297-302 (2009).   DOI
50 G. Gruner. 'Carbon nanotube films for transparent and plastic electronics', J. Mater. Chem., 16, 3533-9 (2006).   DOI
51 B. G. Lewis and D. C. Paine, 'Transparent conductive oxides' MRS Bull, 25, 22 (2000).
52 S. Ito, N. C. Ha, G. Rothenberger, P. Liska, P. Comte, S. M. Zakeeruddin, et al., 'High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode', Chem. Commun (Cambridge, UK), 38, 4004-6 (2006).
53 J. H. Park, Y. Jun, H. Yun, S. Lee, and M. G. Kang, 'Fabrication of an efficient dye sensitized solar cell with stainless steel substrate', J. Electrochem. Soc., 155(7), F145-9 (2008).   DOI   ScienceOn
54 Y. Kijitori, M. Ikegami, and T. Miyasaka. 'Highly Efficient Plastic Dye-sensitized Photoelectrodes Prepared by Low-temperature Binder-free Coating of Mesoscopic Titania Pastes', Chem. Lett. 36, 190 (2007).   DOI
55 M. G. Kang, N. Park, K. S. Ryu, S. H. Chang, and K. A. Kim, '4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate', Sol. Energy Mater Sol. Cells, 903, 574-81 (2006).
56 K. Miettunen, X. Ruan, T. Saukkonen, J. Halme, M. Toivola, H. Guangsheng, et al. 'Stability of dye solar cells with photoelectrode on metal substrates', J. Elec trochem. Soc., 157, B814-9 (2010).   DOI
57 N. G. Park, K. M. Kim, M. G. Kang, K. S. Ryu, S. H. Chang, and Y. J. Shin, 'Chemical Sintering of Nanoparticles: A Methodology for Low-Temperature Fabrication of Dye-Sensitized $TiO_2$ Films', Adv. Mater., 17, 2349 (2005).   DOI
58 Y. I. Li, W. J. Lee, D. K. Lee, K. K. Kim, N. G. Park, and M. J. Ko, 'Pure anatase $TiO_2$ "nanoglue": An inorganic binding agent to improve nanoparticle interconnections in the low-temperature sintering of dye-sensitized solar cells', Applied Physics Letters, 98, 103301 (2011).   DOI
59 T. Yamaguchi, N. Tobe, D. Matsumoto, and H. Arakawa, 'Highly efficient plastic substrate dye-sensitized solar cells using a compression method for preparation of $TiO_2$ photoelectrodes', Chem. Commun. Camb., 45, 4767 (2007).
60 D. Zhang, T. Yoshida, and H. Minoura. 'Low-temperature fabrication of efficient porous titania photoelectrodes by hydrothermal crystallization at the solid/gas interface', Adv Mater (Weinheim, Germany), 15(10), 814-7 (2003).   DOI
61 T. Oekermann, D. S. Zhang, T. Yoshida, and H. Minoura. 'Electron Transport and Back Reaction in Nanocrystalline $TiO_2$ Films Prepared by Hydrothermal Crystallization', J. Phys. Chem. B, 108, 2227 (2004).   DOI
62 S. Uchida, M. Tomiha, H. Takizawa, and M. Kawaraya, 'Flexible dye-sensitized solar cells by 28 GHz microwave irradiation', J. Photochem. Photobiol., A 164, 93 (2004).   DOI
63 D. S. Zhang, T. Yoshida, T. Oekermann, K. Furuta, and H. Minoura. 'Room-Temperature Synthesis of Porous Nanoparticulate $TiO_2$ Films for Flexible Dye-Sensitized Solar Cells', Adv. Funct. Mater., 16, 1228 (2006).   DOI
64 T. Miyasaka and Y. Kijitori, 'Low-Temperature Fabrication of Dye-Sensitized Plastic Electrodes by Electrophoretic Preparation of Mesoporous $TiO_2$ Layers', J. Electrochem. Soc., 151, A1767 (2004).   DOI
65 J. H. Yum, S. S. Kim, D. Y. Kim, and Y. E. Sung, 'Electrophoretically deposited $TiO_2$ photo-electrodes for use in flexible dye-sensitized solar cells', J. Photochem. Photobiol., A 173, 1 (2005).   DOI
66 D. Gutierrez-Tauste, I. Zumeta, E. Vigil, M. A. Hernandez-Fenollosa, X. Domenech, and J. A. Ayllon, 'New low-temperature preparation method of the $TiO_2$ porous photoelectrode for dye-sensitized solar cells using UV irradiation', J. Photochem. Photobiol., A 175, 165 (2005).   DOI
67 Y. L. Li, D. Y. Lee, S. R. Min, H. N. Cho, J. S. Kim, and C. W. Chung, 'Effect of Oxygen Concentration on Properties of Indium Zinc Oxide Thin Films for Flexible Dye-Sensitized Solar Cell', Jpn. J. Appl. Phys., 47, 6896 (2008).   DOI
68 M. Durr, A. Schmid, M. Obermaier, S. Rosselli, A. Yasuda, and G. Nelles. 'Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers', Nature Mater., 4, 607 (2005).   DOI
69 D. Zhang, T. Yoshida, and H. Minoura, 'Low temperature synthesis of porous nanocrystalline $TiO_2$ thick film for dye-sensitized solar cells by hydrothermal crystallization', Chem. Lett., 9, 874-5 (2002).