Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.2.51

The Influence of Impurities in Room Temperature Ionic Liquid Electrolyte for Lithium Ion Batteries Containing High Potential Cathode  

Kim, Jiyong (Department of Energy and Chemical Engineering, Incheon National University)
Tron, Artur V. (Department of Energy and Chemical Engineering, Incheon National University)
Yim, Taeeun (Advanced Batteries Research Center, KETI)
Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.2, 2015 , pp. 51-57 More about this Journal
Abstract
We report the effect of the impurities including water and bromide in the propylmethylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PMPyr-TFSI) on the electrochemical performance of lithium ion batteries. The several kinds of PMPyr-TFSI electrolytes with different amount of impurities are applied as the electrolyte to the cell with the high potential electrode, $LiNi_{0.5}Mn_{1.5}O_4$ spinel. It is found that the impurities in the electrolytes cause the detrimental effect on the cell performance by tracing the cycleability, voltage profile and Coulombic efficiency. Especially, the polarization and Coulombic efficiency go to worse by both impurities of water and bromide, but the cycleability was not highly influenced by bromide impurity unlike the water impurity.
Keywords
lithium secondary battery; high potential; electrolyte; ionic liquid; impurity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 M. Egashira, M. Tanaka-Nakagawa, I. Watanabe, S. Okada, and J. Yamaki, 'Charge-discharge and high temperature reaction of $LiCoO_2$ in ionic liquid electrolytes based on cyano-substituted quaternary ammonium cation' J. Power Sources, 160, 1387 (2006).   DOI
2 S. Li, X. Ai, J. Feng, Y. Cao, and H. Yang, 'Diphenylamine: A safety electrolyte additive for reversible overcharge protection of 3.6V-class lithium ion batteries' J. Power Sources, 184, 553 (2008).   DOI
3 N. Alias, and A. A. Mohamad, 'Advances of aqueous rechargeable lithium-ion battery: A review' J. Power Sources, 274, 237 (2015).   DOI
4 K. Xu, 'Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries' Chem. Rev., 104, 4303 (2004).   DOI
5 J. Zhang, J. Wang, J. Yang, and Y. Nuli, 'Artificial Interface Deriving from Sacrificial Tris(trimethylsilyl) phosphate Additive for Lithium Rich Cathode Materials' Electrochim. Acta, 117, 99 (2014).   DOI
6 P. Barpanda, S.-I. Nishimura, and A. Yamada, 'High-Voltage Pyrophosphate Cathodes' Adv. Energy Mater., 2, 841 (2012).   DOI
7 E. Cha, J. Mun, E. R. Cho, T. Yim, Y. G. Kim, S. M. Oh, S. A. Lim, and J. W. Lim, 'The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery' J. Korean Electrochem. Soc., 14, 152 (2011).   DOI
8 J. Mun, T. Yim, J. H. Park, J. H. Ryu, S. Y. Lee, Y. G. Kim, and S. M. Oh, 'Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of $LiCoO_2$ for advanced, safe lithium-ion batteries' Sci. Rep., 4, 5802 (2014).   DOI
9 T. Yim, H. Y. Lee, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and Y. G. Kim, 'Synthesis and Properties of Pyrrolidinium and Piperidinium Bis (trifluoromethanesulfonyl) imide Ionic Liquids with Allyl Substituents' Bull. Korean Chem. Soc., 28, 1567 (2007).   DOI
10 J. Mun, T. Yim, K. Park, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature' J. Electrochem. Soc., 158, A453 (2011).   DOI
11 J. Mun, Y. S. Jung, T. Yim, H. Y. Lee, H.-J. Kim, Y. G. Kim, and S. M. Oh, 'Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode' J. Power Sources, 194, 1068 (2009).   DOI
12 E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H.-T. Kim, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl) imide-based ionic liquid for lithium-ion batteries' Electrochem. Commun., 22, 1 (2012).   DOI   ScienceOn
13 E. Markevich, V. Baranchugov, G. Salitra, D. Aurbach, and M. A. Schmidt, 'Behavior of Graphite Electrodes in Solutions Based on Ionic Liquids in In Situ Raman Studies' J. Electrochem. Soc., 155, A132 (2008).   DOI
14 X. W. Gao, C. Q. Feng, S. L. Chou, J. Z. Wang, J. Z. Sun, M. Forsyth, D. R. MacFarlane, and H. K. Liu, 'LiNi0.5Mn1.5O4 spinel cathode using room temperature ionic liquid as electrolyte' Electrochim. Acta 101, 151 (2013).   DOI
15 S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, N. Terada, P. Charest, A. Guerfi, and K. Zaghib, 'Compatibility of N-Methyl-N-propylpyrrolidinium Cation Room-Temperature Ionic Liquid Electrolytes and Graphite Electrodes' J. Phys. Chem. C, 112, 16708 (2008).   DOI
16 Y. Baba, S. Okada, and J. Yamaki, 'Thermal stability of $LixCoO_2$ cathode for lithium ion battery' Solid State Ionics, 148, 311 (2002).   DOI   ScienceOn
17 G. H. Min, T. Yim, Y. L. Hyun, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and G. K. Young, 'Synthesis and physicochemical properties of ionic liquids: 1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborates' Bull. Korean Chem. Soc., 28, 1562 (2007).   DOI
18 J. Mun, S. Kim, T. Yim, J. H. Ryu, Y. G. Kim, and S. M. Oh, 'Comparative Study on Surface Films from Ionic Liquids Containing Saturated and Unsaturated Substituent for $LiCoO_2$' J. Electrochem. Soc., 157, A136 (2010).   DOI
19 T. Yim, C. Y. Choi, J. Mun, S. Oh, and Y. G. Kim, 'Synthesis and Properties of Acyclic Ammonium-based Ionic Liquids with Allyl Substituents as Electrolytes' Molecules, 14, 1840 (2009).   DOI