Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.2.45

Nitrided LATP Solid Electrolyte for Enhanced Chemical Stability in Alkaline Media  

Seong, Ji Young (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER))
Lee, Jong-Won (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER))
Im, Won Bin (School of Materials Science and Engineering, Chonnam National University)
Kim, Sung-Soo (Graduate School of Energy Science and Technology, Chungnam National University)
Jung, Kyu-Nam (Energy Efficiency Research Division, Korea Institute of Energy Research (KIER))
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.2, 2015 , pp. 45-50 More about this Journal
Abstract
In the present work, to increase the chemical stability of the lithium-ion-conducting ceramic electrolyte ($Li_{1+x+y}Al_xTi_{2-x}Si_yP_{3-y}O_{12}$, LATP) in the strong alkaline solution, the surface of LATP was modified by the nitridation process. The surface and structural properties of nitride LATP solid electrolyte were characterized by X-ray diffraction, X-ray photoelectron spectrometer and scanning electron microscopy and ac-impedance spectroscopy, which were correlated to the chemical stability and electrochemical performance of LATP. The nitrided LATP immersed in the alkaline solution for 30 days exhibits the enhanced chemical stability than the pristine LATP. Moreover, a rechargeable hybrid Li-air battery constructed with the nitrided LATP solid electrolyte shows considerably reduced discharge-charge voltage gaps (enhanced the round-trip efficiency) in comparison to the cell constructed with pristine LATP, which indicate that the surface nitridation process can be the efficient way to improve the chemical stability of solid electrolyte in alkaline media.
Keywords
$Li^+$-conducting solid electrolyte; Nitridation process; Hybrid Li-air battery; Chemical stability in alkaline solution;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Armand and J.-M. Tarascon, Nature, 451, 652 (2008).   DOI
2 V. Neburchilov, H. Wang, J. J. Martin and W. Qu, J. Power Sources, 195, 1271 (2010).   DOI
3 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, J. Phys. Chem. Lett., 1, 2193 (2010).   DOI
4 F. Cheng and J. Chen, Chem. Soc. Rev., 41, 2172 (2012).   DOI
5 J. Fu, J. Am Ceram. Soc., 80, 1901 (1997).
6 N. Imanishi, S. Hasegawa, T. Zhang, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 185, 1392 (2008).   DOI
7 T. Zhang, N. Imanishi, S. Hasegawa, A. Hirano, J. Xie, Y. Takeda, O. Yamamoto, and N. Sammes, Electrochem. Solid-State Lett., 12, A132 (2009).   DOI
8 T. Zhang, N. Imanishi, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, and N. Sammes, Chem. Commun., 46, 1661 (2010).   DOI
9 Y. Wang and H. Zhou, J. Power Sources, 195, 358 (2010).   DOI
10 P. He, Y. Wang, and H. Zhou, Electrochem. Commun., 12, 1686 (2010).   DOI
11 L. Li, X. Zhao, and A. Manthiram, Electrochem. Commun., 14, 78 (2012).   DOI
12 S. Hasegawa, N. Imanishi, T. Zhang, J. Xie, A. Hirano, Y. Takeda, and O. Yamamoto, J. Power Sources, 189, 371 (2009).   DOI   ScienceOn
13 Y. Shimonishi, T. Zhang, P. Johnson, N. Imanishi, A. Hirano, Y. Takeda, O. Yamamoto and N. Sammes, J. Power Sources, 195, 6187 (2010).   DOI
14 J. S. Thokchom and B. Kumar, J. Electrochem. Soc., 154, A331 (2007).   DOI
15 B. Kumar and S. Lin, J. Am. Ceram. Soc., 74, 226 (1991).   DOI
16 F. Ding, W. Xu, Y. Shao, X. Chen, Z. Wang, F. Gao, X. Liu, and J.-G. Zhang, J. Power Sources, 214, 292 (2012).   DOI