Browse > Article
http://dx.doi.org/10.5229/JKES.2015.18.1.31

Tin Germanium Sulfide Nanoparticles for Enhanced Performance Lithium Secondary Batteries  

Cha, E.H. (Dept. of Pharmacy, Hoseo Univ.)
Kim, Y.W. (Graduated School of Green energy engineering, Hoseo Univ.)
Lim, S.A. (Graduated School of Green energy engineering, Hoseo Univ.)
Lim, J.W. (POSCO ICT, Strategic planning)
Publication Information
Journal of the Korean Electrochemical Society / v.18, no.1, 2015 , pp. 31-37 More about this Journal
Abstract
Composition-controlled ternary components chalcogenides germanium tin sulfide ($Sn_xGe_{1-x}S$) nanoparticles were synthesized by a novel gas-phase laser photolysis reaction of tetramethyl germanium, tetramethyl tin, and hydrogen sulfide mixture. Subsequent thermal annealing of as-grown amorphous nanoparticles produced the crystalline orthorhombic phase nanoparticles. All these composition-tuned nanoparticles showed excellent cycling performance of the lithium ion battery. The germanium sulfide nanoparticles exhibit a maximum capacity of 1200 mAh/g after 70 cycles. As the tin composition (x) increases, the capacity maintains better at the higher discharge/charge rate. This novel synthesis method of tin germanium sulfide nanoparticles is expected to contribute to expand their applications in high-performance energy conversion systems.
Keywords
Carbon group; Nanocrystals; Laser Photolysis; Lithium Ion Batteries;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Wang, Q. Wang, A. Javey, R. Tu, H. Dai, H. Kim, P. C. McIntyre, T. Krishnamohan and K. C. Saraswat, Appl. Phys. Lett. 83, 2432 (2003).   DOI
2 T. Hanrath and B. A. Korgel, J. Am. Chem. Soc.126, 15466 (2004).   DOI
3 X. Meng, R. Al-Salman, J. Zhao, N. Borissenko, Y. Li and F. Endres, Angew. Chem. Int. Ed. 48, 2703 (2009).   DOI
4 B. Sun, G. Zou, X. Shen and X. Zhang, Appl. Phys. Lett. 94, 233504 (2009).   DOI
5 L. Cao, J. -S. Park, P. Fan, B. Clemens, M. L. Brongersma, Nano Lett. 10, 1229 (2010).   DOI
6 C. K. Chan, X. F. Zhang and Y. Cui, Nano Lett. 8, 307 (2008).   DOI
7 M. -H. Park, K. Kim, J. Kim and J. Cho, Adv. Mater. 22, 415 (2010).   DOI   ScienceOn
8 X. -L. Wang, W. -Q. Han, H. Chen, J. Bai, T. A. Tyson, X. -Q. Yu, X. -J. Wang and X. -Q. Yang, J. Am. Chem. Soc. 133, 20692 (2011).   DOI   ScienceOn
9 G. Jo, I. Choi, H. Ahn and M. J. Park, Chem. Commun. 48, 3987 (2012).   DOI   ScienceOn
10 D. -J. Xue, S. Xin, Y. Yan, K. -C. Jiang, Y. -X. Yin, Y.-G. Guo and L. -J. Wan, J. Am. Chem. Soc. 134, 2512 (2012).   DOI   ScienceOn
11 K. H. Seng, M. H. Park, Z. P. Cuo, H. K. Liu and J. Cho, Angew. Chem. Int. Ed. 51, 5657 (2012).   DOI
12 Y. Xiao, M. Cao, L. Ren and C. Hu, Nanoscale 4, 7469 (2012).   DOI   ScienceOn
13 L. P. Tan, Z. Lu; H. T. Tan; J. Zhu; X. Rui; Q. Yan and H. H. Hng, J. Power Sources 206, 253 (2012).   DOI   ScienceOn
14 F. -W. Yuan, H. -J. Yang and H. -Y. Tuan, ACS Nano 6, 9932 (2012).   DOI   ScienceOn
15 M. -H. Park, Y. Cho, K. Kim, J. Kim, M. Liu and J. Cho, Angew. Chem. Int. Ed. 50, 9647 (2011).   DOI   ScienceOn
16 A. M. Chockla, M. G. Panthani, V. C. Holmberg, C. M. Hessel, D. K. Reid, T. D. Bogart, J. T. Harris, C. B. Mullins and B. A. Korgel, J. Phys. Chem. C 116, 11917 (2012).   DOI   ScienceOn
17 N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman and A. A. Volinsky, Appl. Phys. Lett. 100, 083111 (2012).   DOI   ScienceOn
18 K. H. Seng, M. -H. Park, Z. P. Guo, H. K. Liu and J. Cho, Nano Lett. 13, 1230 (2013)   DOI   ScienceOn
19 T. Song, H. Cheng, H. Choi, J. -H. Lee, H. Han, D. H. Lee, D. S. Yoo, M. -S. Kwon, J. -M. Choi, S. G. Doo, H. Chang, J. Xiao, Y. Huang, W. I. Park, Y. -C. Chung, H. Kim, J. A. Rogers and U. Paik, ACS Nano 6, 303 (2012).   DOI   ScienceOn
20 J. Wang, N. Du, H. Zhang, J. Yu and D. Yang, J. Mater. Chem. 22, 1511 (2012).   DOI
21 J. Gu, S. M. Collins, A. I. Carim, X. Hao, B. M. Bartlett and S. Maldonado, Nano Lett. 12, 4617 (2012).   DOI   ScienceOn
22 C. H. Kim, H. S. Im, Y. J. Cho, C. S. Jung, D. M. Jang, Y Myung, H. S. Kim, S. H. Back, Y. R Lim, C. -W. Lee, J. Park, M. S. Song and W.-I. Cho, J. Phys. Chem. C 116, 26190 (2012).   DOI   ScienceOn
23 C. Yan, W. Xi, W. Si, J. Deng and O. G. Schmidt, Adv. Mater. 25, 539 (2012).
24 E. Mullane, T. Kennedy, H. Geaney, C. Dickinson and K. M. Ryan, Chem. Mater. 25, 1816 (2013).   DOI   ScienceOn
25 M. R. St. John, A. J. Furgala and A. F. Sammells, J. Electrochem. Soc. 129, 246 (1982).   DOI
26 J. Graetz, C. C. Ahn, R. Yazami and B. Fultz, J. Electrochem. Soc. 151, A698 (2004).   DOI   ScienceOn
27 Y. Kim, H. Hwang, K. Lawler, S. W. Martin and J. Cho, Electrochim. Acta 53, 5058 (2008).   DOI
28 Y.J. Cho, H. S. Im, Y. Myung, C. H. Kin, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, S. H. Choo, M. S. Song and W. I. Cho, Chem. Comm. 49, 4661 (2013) .   DOI   ScienceOn
29 J. C. Cho, H. S. Im, H. S. Kim, Y. Myung, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, E. H. Cha, W. I. Cho, F. Shojaei and H. S. Kang, ACS Nano 7, 9075 (2013).   DOI   ScienceOn
30 H. S. Im, J. C. Cho, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, F. Shojaei and H. S. Kang, ACS Nano 7, 11103 (2013).   DOI
31 C. S. Fuller and J. C. Severiens, Phys. Rev. 96, 21 (1954).   DOI
32 R. A. Huggins, J. Power Sources 51-82, 13 (1999).